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Abstract

Background: Oxygenic photosynthetic microorganisms such as cyanobacteria and microalgae have attracted
attention as an alternative carbon source for the next generation of biofuels. Glycogen abundantly accumulated
in cyanobacteria is a promising feedstock which can be converted to ethanol through saccharification and
fermentation processes. In addition, the utilization of marine cyanobacteria as a glycogen producer can
eliminate the need for a freshwater supply. Synechococcus sp. strain PCC 7002 is a fast-growing marine coastal
euryhaline cyanobacteria, however, the glycogen yield has not yet been determined. In the present study, the
effects of light intensity, CO2 concentration, and salinity on the cell growth and glycogen content were
investigated in order to maximize glycogen production in Synechococcus sp. strain PCC 7002.

Results: The optimal culture conditions for glycogen production in Synechococcus sp. strain PCC 7002 were
investigated. The maximum glycogen production of 3.5 g L−1 for 7 days (a glycogen productivity of 0.5 g L−1

d−1) was obtained under a high light intensity, a high CO2 level, and a nitrogen-depleted condition in brackish
water. The glycogen production performance in Synechococcus sp. strain PCC 7002 was the best ever reported
in the α-polyglucan (glycogen or starch) production of cyanobacteria and microalgae. In addition, the
robustness of glycogen production in Synechococcus sp. strain PCC 7002 to salinity was evaluated in seawater
and freshwater. The peak of glycogen production of Synechococcus sp. strain PCC 7002 in seawater and
freshwater were 3.0 and 1.8 g L−1 in 7 days, respectively. Glycogen production in Synechococcus sp. strain PCC
7002 maintained the same level in seawater and half of the level in freshwater compared with the optimal
result obtained in brackish water.

Conclusions: We conclude that Synechococcus sp. strain PCC 7002 has high glycogen production activity and
glycogen can be provided from coastal water accompanied by a fluctuation of salinity. This work supports
Synechococcus sp. strain PCC 7002 as a promising carbohydrate source for biofuel production.
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Background
Currently, biorefinery, including production of biofuels
and bio-based chemicals, has received considerable at-
tention. Additionally, environmental concerns and the
depletion of oil reserves have resulted in promoting re-
search on more environmentally benign and sustain-
able biofuels such as bioethanol.
Oxygenic photosynthetic microorganisms, including

cyanobacteria and microalgae, have attracted attention as
an alternative carbon source for biorefineries [1-3]. Cyano-
bacteria and microalgae convert solar energy to biomass
more efficiently (0.5 to 2.0% efficiency) than energy crops
such as switchgrass (0.2% efficiency) [4], and their α-
polyglucans such as glycogen from cyanobacteria or starch
from microalgae, can be converted to bioethanol by yeast
fermentation [5-9]. In addition, they are capable of growing
in aquatic environments, providing the additional benefit
of whole-year cultivation using non-arable land. In particu-
lar, the cultivation of cyanobacteria and microalgae using
seawater or brackish water eliminates the impact on fresh-
water resources [10]. These carbohydrate-producing spe-
cies need to tolerate a wide salinity range because the
salinity of coastal water fluctuates with changes in fresh-
water inflow by climate, weather, and diurnal tidal current.
Therefore, in the current study, the euryhaline cyanobac-
teria Synechococcus sp. strain PCC 7002, which is well-
suited for growing in a coastal region, was selected as a
carbohydrate producer. Synechococcus sp. strain PCC 7002
is naturally transformable and its genome has been fully
sequenced [11]. Based on these superior characteristics,
Synechococcus sp. strain PCC 7002 is a model organism
for research on cyanobacterial metabolites and is expected
to be a platform for biotechnological applications by meta-
bolic engineering [12-17].
According to definition, glycogen productivity is estimated

from glycogen content and biomass productivity. To im-
prove glycogen productivity in cyanobacteria, both the glyco-
gen content and biomass productivity need to be enhanced.
In general, glycogen is accumulated via nitrogen depletion in
many cyanobacteria species, such as Synechococcus sp. strain
PCC 7002, Synechocystis sp. strain PCC 6803, Arthrospira
platensis, Arthrospira maxima, Anabaena variabilis, and
Anacystis nidulans [16-23]. Unfortunately, high glycogen
content is generated under nitrogen depletion which is asso-
ciated with low biomass productivity [19,23]. Hence, it is
important to obtain a high biomass productivity with a satis-
factory glycogen content. However, the integral effect of
growth conditions on glycogen production in Synechococcus
sp. strain PCC 7002 has not been fully investigated.
In the present study, the glycogen production activity of

euryhaline cyanobacteria Synechococcus sp. strain PCC
7002 was examined under several combined growth condi-
tions, including CO2 concentration, light intensity, salinity,
and nitrate supply.
Results
Effect of light intensity and CO2 concentration on
cell growth
Light intensity and CO2 concentration are the key envir-
onmental factors for cyanobacterial cell growth [1]. In this
study, Synechococcus sp. strain PCC 7002 was cultivated
on medium A for 7 days under a light intensity of 50 to
600 μmol photons m−2 s−1 with various CO2 concentra-
tions as depicted in Figure 1 (for example, 0.04 to 4% CO2

in air). As shown in Figure 1a, cell growth in 0.04% CO2

in air (the atmospheric CO2 level) was not altered by an
increase in light intensity. On the other hand, the cell
density of Synechococcus sp. strain PCC 7002 tended to in-
crease when increasing CO2 concentration from 0.04 to
2% and increasing light intensity from 50 to 600 μmol
photons m−2 s−1. However, further increases in CO2 con-
centration to 4% resulted in no significant difference in
cell growth under low and high light intensity, suggesting
that excess CO2 supply (4%) would not provide a positive
effect on cell growth. According to Figure 1, Synechococcus
sp. strain PCC 7002 cultivated under conditions of high
CO2 concentration (2 and 4% CO2) with high illumination
(600 μmol photons m−2 s−1) reached the highest cell density
of around 9 g L−1 after 7 days of cultivation. Thus, both
enriched CO2 supply and high light intensity enhanced the
cell growth of Synechococcus sp. strain PCC 7002.
Effect of light intensity and CO2 concentration on
glycogen content and glycogen production
Light intensity and CO2 supply do not only influence the
growth of photosynthetic organism but also alter their
carbohydrate content [24-26]. Therefore, in this study, the
effect of light intensity (50 to 600 μmol photons m−2 s−1)
and CO2 concentration (such as 0.04 to 4% CO2) on
glycogen content were explored, as shown in Figure 2a.
Glycogen content increased with an increase in light in-
tensity from 50 to 600 μmol photons m−2 s−1.
As shown in Figure 2a, the glycogen content under

300 μmol photons m−2 s−1 increased from 0.8 to 19% as the
CO2 concentration increased from 0.04 to 1%, and under
the same range of CO2 concentrations at 600 μmol photons
m−2 s−1, it increased from 9.4 to 31%. However, further in-
crease in CO2 concentration to 2% under 300 or 600 μmol
photons m−2 s−1 did not enhance glycogen content.
Glycogen production under 50 to 600 μmol photons

m−2 s−1 in 0.04 to 4% CO2 after 7 days was calculated
from biomass production and glycogen content, as
shown in Figure 2b. The maximum glycogen produc-
tion of 2.5 g L−1 was obtained under 600 μmol photons
m−2 s−1 in 2% CO2. Hence, glycogen production in
Synechococcus sp. strain PCC 7002 was significantly im-
proved by the combined optimization of CO2 concen-
tration and light intensity.



Figure 1 Growth curve under different light intensities and CO2 concentrations. (a) Growth curve under 0.04% CO2; (b), 1% CO2; (c), 2%
CO2; and (d), 4% CO2. Light intensities are 50 (circles), 300 (squares), and 600 μmol photons m−2 s−1 (diamonds). Error bars indicate standard
deviations (SD) of three replicated experiments. In some data points, error bars obtained by three replications are smaller than symbols.
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Effect of nitrate supply in different salinity media on
glycogen production under high light and high
CO2 conditions
The accumulation of glycogen occurs in many cyanobacteria,
such as Synechococcus sp. strain PCC 7002, Synechocystis sp.
Figure 2 Glycogen content and glycogen production after 1 week un
(a) Glycogen content; (b) glycogen production. Light intensities are 50 (wh
Data points are mean values from three separate cultures with SD of triplic
strain PCC 6803, A. platensis, A. maxima, A. variabilis, and
A. nidulans, under nitrogen-depleted conditions [16-23].
However, high levels of glycogen are generated under nitro-
gen depletion, which is associated with low biomass product-
ivity [19,23]. Therefore, in this study, the effect of nitrate
der different light intensities and CO2 concentrations.
ite bars), 300 (gray bars), and 600 μmol photons m−2 s−1 (Black bars).
ates.
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supply on both glycogen content and biomass production
in Synechococcus sp. strain PCC 7002 under 600 μmol
photons m−2 s−1 and 2% CO2 was investigated. Addition-
ally, in case of cultivation in brackish water or seawater at
a coastal region, the salinity of medium was fluctuated ac-
cording to climate, weather, and diurnal tidal current.
Therefore, to estimate the glycogen productivity of Syne-
chococcus sp. strain PCC 7002 under different salinity con-
ditions, the glycogen content and biomass production in
brackish water (Figure 3a), seawater (Figure 3b), and fresh-
water (Figure 3c) media were examined. The glycogen
content of Synechococcus sp. strain PCC 7002 in all media
increased with a drop of nitrate concentration from 27 to
9 mM, reaching 52, 50, or 62% of dry-cell weight in brack-
ish water, seawater, or freshwater medium, respectively.
Unfortunately, the biomass productions were suppressed
below 21 mM in brackish water and below 15 mM in sea-
water (Figure 3a,b). Thus, in this study, the glycogen pro-
duction of Synechococcus sp. strain PCC 7002 in each
medium was calculated in order to optimize the nitrate
concentration to obtain a suitable combination of biomass
production and glycogen content, as shown in Figure 3d.
The peak of glycogen production was 3.5 g L−1 in brackish
water with 13 and 15 mM nitrate, 3.0 g L−1 in seawater
Figure 3 Biomass production, glycogen content, and glycogen produ
production (circles) and glycogen content (squares) in brackish water; (b) i
different nitrate supplies in brackish water (circles), seawater (squares), and
photons m−2 s−1 and 2% CO2. Data points are mean values from three sep
with 15 mM nitrate, or 1.8 g L−1 in freshwater with 9 mM
nitrate (Figure 3d). Glycogen production in Synechococcus
sp. strain PCC 7002 maintained the same level in seawater
and half of the level in freshwater compared with the level
achieved in brackish water.

Discussion
Cyanobacterial glycogen is remarkable carbon source for
bioethanol production by yeast fermentation [5]. As shown
in Figure 2a, glycogen accumulated under high light inten-
sity and high CO2 concentration. In vitro and in situ kinetic
experiments have revealed that cyanobacterial glycogen
synthesis is regulated by adenosine diphosphate (ADP)-glu-
cose pyrophosphorylase (AGPase) activity, which is en-
hanced by 3-phosphoglycerate (3-PG) accumulation and
inhibited by inorganic phosphorus accumulation [27].
Therefore, 3-PG might be accumulated by the increase in
light intensity and CO2 concentration, which would lead to
glycogen accumulation in Synechococcus sp. strain PCC
7002.
The glycogen production of Synechococcus sp. strain PCC

7002 was examined under different nitrate additions in a
brackish water medium (Figure 3a). As shown in Additional
file 1: Figure S1, cell growth in brackish water media under
ction after 1 week under different salinity conditions. (a) Biomass
n seawater; and (c) in freshwater; (d) glycogen production under
freshwater (diamonds). Cells were cultivated under 600 μmol
arate cultures with SD of triplicates.
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9 and 15 mM nitrate supplies were inhibited by nitrogen
limitation. Under nitrogen-limiting conditions, biomass
production would be strongly inhibited due to the rela-
tively low photosynthesis efficiency, expecting that light-
harvesting proteins (such as phycobiliproteins) would be
degraded to compensate for the insufficient nitrogen avail-
ability [28]. On the other hand, the glycogen content in
cyanobacteria is accumulated by nitrogen depletion [16-20].
Since lower initial nitrate supplies caused faster nitrate de-
pletion (as shown in Additional file 2: Figure S2), glycogen
content increased gradually with a decrease in initial sup-
plied nitrate as shown in Figure 3a.
In addition, glycogen production was influenced by

salinity in medium as shown in Figure 3a-d. Glycogen
production in seawater was a little lower than brackish
water, which was caused by the lower glycogen content
(Figure 3a,b,d). Glycogen content in seawater would be
reduced by the accumulation of osmolytes, such as glu-
cosylglycerol, glucosylglycerate, and sucrose in Synecho-
coccus sp. strain PCC 7002, with an increase in sodium
chloride concentration [16,17,30]. Also, the decline of
glycogen production in freshwater was due to lower bio-
mass production (Figure 3a,c,d). High cell density in
Synechococcus sp. strain PCC 7002 could not be ob-
tained in the freshwater medium.
The biomass production and α-polyglucan production

in various cyanobacteria and microalgae are summarized
in Table 1. The highest biomass production (7.2 g L−1)
and α-polyglucan production (3.5 g L−1) from Synecho-
coccus sp. strain PCC 7002 under the optimal conditions
with the brackish water medium are higher than that re-
ported by other studies [19,21,22,25,30-36]. In addition,
glycogen production of Synechococcus sp. strain PCC
7002 in a seawater and freshwater environment is
greater than or similar with other cyanobacteria and
microalgae as shown in Table 1. Therefore, Synechococ-
cus sp. strain PCC 7002 would not only provide glycogen
from coastal seawaters without the need for freshwater
resources, but also can produce the highest level of α-
polyglucan among microalgae and cyanobacteria in wide
salinity conditions.
To further improve glycogen productivity in Synechococ-

cus sp. strain PCC 7002, the glycogen accumulation rate
should be accelerated through metabolic engineering. Ac-
cording to Kumaraswamy et al., the intracellular glycogen
content in Synechococcus sp. strain PCC 7002 is positively
correlated with the expression level of the NAD+-dependent
glyceraldehyde 3-phosphate dehydrogenase (GAPDH-1)
gene under photoautotrophic conditions [15]. Accordingly,
glycogen productivity in Synechococcus sp. strain PCC
7002 may be further improved by a combination of the
optimization of growth conditions and the overexpression
of GAPDH-1. Glycogen produced by Synechococcus sp.
strain PCC 7002 in this study was converted to ethanol by
yeast fermentation (Additional file 3: Figure S3). The en-
hancement of glycogen production by Synechococcus sp.
strain PCC 7002 would contribute to biofuel production.

Conclusions
Synechococcus sp. strain PCC 7002 which combines a
wide salinity tolerance and high glycogen production cap-
acity could become an important carbon source for the
development of biofuels and bio-based chemicals produc-
tion. The glycogen productivity of Synechococcus sp. strain
PCC 7002 would be further enhanced through genetic en-
gineering or metabolic engineering in the next step, which
could accelerate the glycogen accumulation rate under ni-
trogen depletion.

Methods
Microorganism and growth conditions
The cyanobacteria Synechococcus sp. strain PCC 7002 was
obtained from the Pasteur Culture Collection (Paris,
France). Cells were pre-cultured in 500 mL Erlenmeyer
flasks containing 250 mL of modified medium A (3.0 g L−1

NaNO3, 50 mg L−1 KH2PO4, 18 g L−1 NaCl, 5.0 g L−1

MgSO4•7H2O, 0.37 g L−1 CaCl2•2H2O, 0.60 g L−1 KCl,
32 mg L−1 Na2EDTA•2H2O, 8.0 mg L−1 FeCl3•6H2O,
34 mg L−1 H3BO3, 4.3 mg L−1 MnCl2•4H2O, 0.32 mg L−1

ZnCl2, 30 μg L−1 MoO3, 3.0 μg L−1 CuSO4•5H2O, 12 μg L−1

CoCl2•6H2O, 4.0 μg L−1 cobalamin, and 8.3 mM Tris ami-
nomethane, all of which were purchased from Nacalai
Teque, Inc., (Kyoto, Japan)) [37] with 100 rpm agitation
under continuous illumination at 50 μmol photons m−2 s−1

for 7 days in air at 30 ± 2 °C in an NC350-HC plant chamber
(Nippon Medical and Chemical Instruments, Osaka, Japan).
Experiments were carried out in a closed double-deck flask,
containing in the first stage 50 mL of 2 M NaHCO3/Na2CO3

buffer with the appropriate pH to obtain the desired CO2

concentration [38,39], and containing in the second stage
70 mL of culture medium. NaHCO3/Na2CO3 buffer was ex-
changed after 4 days to maintain the desired CO2 concentra-
tion. Pre-cultured cells were inoculated into fresh medium at
a dry-based biomass concentration of 0.01 g dry-cell weight
L−1 (the optical density at 750 nm (OD750) value was 0.04)
and cultivated for 7 days at 33 ± 3 °C with 80 rpm agitation.
The effects of light intensity and CO2 concentration on
glycogen production were examined under 50, 300, or
600 μmol photons m−2 s−1 at 0.04 (atmospheric level), 1, 2,
or 4% (v/v) CO2 in air. Light intensity was measured in the
middle of the medium using an LI-250A light meter (LI-
COR, Lincoln, Nebraska, USA) equipped with an LI-190SA
quantum sensor (LI-COR). To study the effect of nitrate
supply in different salinity media under 600 μmol photons
m−2 s−1 in 2% CO2 in air, pre-cultured cells were transferred
into 3-types of media with 9 to 35 mM nitrate. : 1) medium
A (brackish water medium; salinity at 2.7%), 2) medium A
containing 0.075 g L−1 MgSO4•7H2O, 0.036 g L−1



Table 1 Production of biomass and α-polyglucan by microalgae and cyanobacteria under phototrophic condition

Species Biomass production
(g-dry biomass L−1)

α-polyglucan
production (g L−1)

α-polyglucan content
(% of dry biomass)

Light intensity
(μmol photons m−2 s−1)

Nitrogen
source

Carbon source Medium Reference

Porphyridium sp. UTEX 637 5.6 0.36 6.7 300 10 mM KNO3 1.5–2% CO2 aeration Seawater [30]

Porphyridium aerugineum 5.0 0.63 12.7 300 5.2 mM NaNO3 1.5–2% CO2 aeration Freshwater

Tetraselmis subcordiformis 5.7 2.7 47.8 200 11 mM KNO3 3% CO2 aeration Seawater [31]

Chlorella vulgaris CCAP
211/11B

2.4 1.3 55.0 300 6 mM KNO3 2% CO2 aeration Freshwater [32]

Arthrospira maxima SOSA 18 0.95 0.91 70.0 50 No addition 200 mM HCO3
− High sodium watera [21]

Arthrospira platensis NIES-39 1.6 1.0 63.0 700 3 mM NaNO3 200 mM HCO3
− High sodium watera [19]

Arthrospira platensis NIES-46 1.1 0.58 53.0 50 No addition 200 mM HCO3
− High sodium watera [33]

Anabaena variabilis
ATCC 29413

0.3 0.08 26.7 50 No addition 1.5% CO2 aeration Freshwater [22]

Gloeocapsa alpicola CALU 743 N.D. 0.60 N.D. 220 4 mM KNO3 2% CO2 aeration Freshwater [34]

Plectonema boryanum
ATCC 18200

0.34 0.08 22.0 100 0.5 mM
Ca(NO3)2•4H2O

Air Freshwater [35]

Synechocystis sp. PCC 6701 N.D. 0.46 N.D. 40 No addition 1% CO2 aeration Freshwater [36]

Synechococcus sp. PCC 7002 N.D. 0.33 N.D. 2500 11 mM NaNO3 1% CO2 Brackish water [25]

7.2 3.5 49.8 600 15 mM NaNO3 2% CO2 Brackish water This work

7.7 3.0 38.7 600 15 mM NaNO3 2% CO2 Seawater

2.8 1.8 62.2 600 9 mM NaNO3 2% CO2 Freshwater

N.D.: Not determined.
aHigh sodium water indicates SOT medium [19].
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CaCl2•2H2O, 0.04 g L−1 K2HPO4 without NaCl (fresh-
water medium; salinity at 0.3%), 3) medium A containing
29.2 g L−1 NaCl, 7 g L−1 MgSO4•7H2O, 4 g L−1

MgCl2•6H2O, 1.47 g L−1 CaCl2•2H2O, 0.6 g L−1 KCl,
0.05 g L−1 KH2PO4 (seawater medium; salinity at 4.0%).
Medium salinity were measured with a refractometer (S/
Mill-E; Atago Co. Ltd, Tokyo, Japan).

Analytical methods
Cell growth was monitored by measuring OD750 in a spec-
trophotometer (UVmini-1240, Shimadzu, Kyoto, Japan)
[29]. Cell concentration was shown as dry-cell weight dur-
ing cultivation and was converted using a pre-established
calibration between dry-cell weight and optical density of
cell suspension (1.0 OD750 equals approximately 0.32 g
dry-cell weight L−1). Dry-cell weight was determined by
centrifugation of serial diluted cell-suspension (6,300 × g
for 2 minutes at 25 °C), washing the pellet once with 0.3 M
ammonium carbonate and lyophilization.
Glycogen content and concentration were determined

by high performance liquid chromatography (HPLC)
(Shimadzu, Kyoto, Japan) using a size exclusion HPLC
column (OHpak SB-806 M HQ; Shodex, Tokyo, Japan) and
a reflective index detector (RID-10A; Shimadzu, Kyoto,
Japan) [40]. Glycogen was extracted from the dried cells by
the modified method of Ernst and Böger [22]. Glycogen
productivity (g L−1 d−1) was estimated by dividing glycogen
production by cultivation time. Experimental data were
means of triplicate samples and error bars in the figures in-
dicate the standard deviation.
Additional files

Additional file 1: Figure S1. Growth curve under different nitrate
supplies in brackish water medium. Cells were cultivated under 600 μmol
photons m−2 s−1 and 2% CO2 condition with 9 to 27 mM nitrate supplies.
Error bars indicate standard deviations (SD) of three replicated
experiments. In some data points, error bars obtained by three
replications are smaller than symbols.

Additional file 2: Figure S2. Nitrate consumption under different
nitrate supplies in brackish water medium. Nitrate concentrations were
determine according to method proposed by American Public Health
Association [41]. Cells were cultivated under 600 μmol photons m−2 s−1

and 2% CO2 from 35 to 9 mM nitrate supplies. Error bars indicate
standard deviations (SD) of three replicated experiments. In some data
points, error bars obtained by three replications are smaller than symbols.

Additional file 3: Figure S3. Ethanol production from glycogen
extracts of Synechococcus sp. strain PCC 7002 following yeast
fermentation. Ethanol was produced from glycogen extracts of
Synechococcus sp. strain PCC 7002 by Saccharomyces cerevisiae MT8-1 in the
presence of 0.3 U L−1 α-amylase and 0.1 U L−1 glucoamylase. Glycogen
extracts of Synechococcus sp. strain PCC 7002 were prepared as described in
Methods and then adjusted to pH 7.0 using 98% H2SO4 (w/w). S. cerevisiae
MT8-1 cells were grown aerobically in 1-L Erlenmeyer flasks containing
500 mL YPD medium (10 g L−1 yeast extract, 20 g L−1 peptone, and 20
g L−1 glucose) at 30°C with 150 rpm agitation for 48 hours, and then
collected by centrifugation at 5,000 × g for 3 minutes at 25°C, washed twice
with distilled water, and then inoculated into 50 mL YPG medium (10 g L−1

yeast extract, 20 g L−1 peptone, 0.1 M phosphate buffer adjusted to pH 6.0,
10 mM disodium EDTA, and 10 g L−1 Synechococcus sp. strain PCC 7002
glycogen extract). Ethanol production was performed at 30°C and an
agitation speed of 500 rpm in 100-mL closed bottles equipped with a
bubbling CO2 outlet and a stir bar under oxygen-limited conditions.
Agitation speed was maintained with a magnetic stirrer (VARIOMAG
Telesystem; Thermo Fisher Scientific, Waltham, Massachusetts, United
States).
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