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Abstract

Background: Enzymatic hydrolysis is a crucial step of biomass conversion into biofuels and different pretreatments
have been proposed to improve the process efficiency. Amongst the various factors affecting hydrolysis yields of
biomass samples, porosity and water accessibility stand out due to their intimate relation with enzymes accessibility
to the cellulose and hemicellulose fractions of the biomass. In this work, sugarcane bagasse was subjected to acid
and alkali pretreatments. The changes in the total surface area, hydrophilicity, porosity and water accessibility of
cellulose were investigated by scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR).

Results: Changes in chemical and physical properties of the samples, caused by the partial removal of
hemicellulose and lignin, led to the increase in porosity of the cell walls and unwinding of the cellulose bundles, as
observed by SEM. 1H NMR relaxation data revealed the existence of water molecules occupying the cores of wide
and narrow vessels as well as the cell wall internal structure. Upon drying, the water molecules associated with the
structure of the cell wall did not undergo significant dynamical and partial moisture changes, while those located
in the cores of wide and narrow vessels kept continuously evaporating until reaching approximately 20% of relative
humidity. This indicates that water is first removed from the cores of lumens and, in the dry sample, the only
remaining water molecules are those bound to the cell walls. The stronger interaction of water with pretreated
bagasse is consistent with better enzymes accessibility to cellulose and higher efficiency of the enzymatic hydrolysis.

Conclusions: We were able to identify that sugarcane bagasse modification under acid and basic pretreatments
change the water accessibility to different sites of the sample, associated with both bagasse structure (lumens and cell
walls) and hydrophilicity (lignin removal). Furthermore, we show that the substrates with increased water accessibility
correspond to those with higher hydrolysis yields and that there is a correlation between experimentally NMR-measured
transverse relaxation times and the efficiency of enzymatic hydrolysis. This might allow for semiquantitative estimates
of the enzymatic hydrolysis efficiency of biomass samples using inexpensive and non-destructive low-field 1H NMR
relaxometry methods.
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Background
Sugarcane bagasse is a residue from sugarcane milling
for sugar and alcohol production and represents an
abundant feedstock available to be converted into second
generation biofuels [1,2]. In Brazil almost 600 million tons
of sugarcane are processed every year [3], and 30% of this
amount corresponds to bagasse. This material could be
processed in situ, yielding cellulosic ethanol and other
chemicals, by adapting the current milling plants already
used for ethanol production within the framework of a
biorefinery.
The classical approach to the production of cellulosic

ethanol involves three key steps: 1) pretreatment of the
feedstocks to decrease biomass recalcitrance, 2) enzymatic
hydrolysis to break the carbohydrates into hexoses and/or
pentoses and 3) sugar fermentation into alcohol [4,5].
Biomass recalcitrance is the major barrier to the in-

dustrial implementation of this process on a large scale
since it decreases the efficiency of enzymatic hydrolysis
and requires higher enzyme loading [4,6]. Thus, significant
research efforts have been applied to decrease enzyme
costs, to develop more efficient pretreatments and to
understand the chemical and structural changes taking
place as a consequence of different pretreatment tech-
nologies [1,7-9].
A variety of pretreatment methods have been proposed

to decrease the recalcitrance of lignocellulosic matrices
and to improve hydrolysis efficiency. The most common
processes include milling [10,11], hot water and/or
steam explosion [4,12], ammonia explosion (AFEX) [13],
supercritical fluids [14,15], sulfite [16,17], diluted acids
and bases [1,18-20] and irradiation [8,21].
Different pretreatments may have diverse effects on

the biomass structure and chemical composition. The
pretreatments may act, for instance, by promoting the
decrease of cellulose crystallinity and/or degree of poly-
merization, by changing the lignin to hemicellulose ratio
or by altering the total surface area of the substrate [1,2,8].
Lignin rearrangements, mainly characterized by its

removal from the inner parts of the cell wall and re-
deposition on the surface, was described for other ligno-
cellulosic biomasses submitted to steam explosion [22],
diluted acid [23,24] and organosolv pretreatments [25].
Among the various factors that affect the rate of en-

zymatic digestibility, the modification of sample porosity
was identified as one of the most important, because it
directly influences the enzyme access to the substrate
[6,26,27]. Due to the intimate contact between the cellu-
lose and the enzymes that is required for the hydrolytic
action to take place, the overall surface area, hydrated
and accessible to the enzyme action, assumes a fundamen-
tal role to the process efficiency.
A variety of analytical techniques have been used to

estimate the water accessibility in cellulose and the total
surface area available in different lignocellulosic matrices.
These techniques may use probing molecules, such as
dextran in solute exclusion methods, or water in differen-
tial scanning calorimetry (DSC) and nuclear magnetic
resonance (NMR) relaxometry [27-30]. They can also be
based on the adsorption of a given molecule to lignocellu-
losic substrates, for instance, nitrogen adsorption to pore
surfaces (BET method), proteins and enzymes adsorption,
and the adsorption of dyes with a specific affinity to cellu-
lose domains (Simon’s staining method) [6,26,31].
Tanaka et al. [26] compared the efficiency of enzymes

with different sizes (cross-linked or normal cellulases) to
deconstruct microcrystalline and amorphous cellulose.
They observed that synergetic effects and hydrolysis yields
are favored by the presence of pores on the substrate
which are sufficiently large to allow the enzyme to diffuse
in. Suurnäkkiet al. [31] concentrated on the porosity pro-
file resulting from enzyme action on pine and birch kraft
pulps using solute exclusion and NMR techniques.
A relevant question in this field is how the different

pretreatments affect the sample surface area available to
hydrolysis, which could create several cellulose sites
containing water molecules with varying mobility. Several
published studies focus on the application of the techniques
currently available for porosity determination to evaluate
structural changes concerning porous distribution and cel-
lulose accessibility on pretreated samples [6,27,30].
Wood samples undergoing thermomechanical, organo-

solv and steam treatments were studied by Chandra et al.
[6], who estimated the cellulose accessibility on these
samples using a modified version of Simons’ stain (SS)
method. The method is based on a dye mixture containing
direct blue (DB) and direct orange (DO) dyes and on their
different sizes and cellulose affinities. This allowed the
authors to establish a correlation between hydrolysis
yields reached by each treatment and the ratio between the
adsorbed amount of DO and DB [6]. Wood samples treated
with dilute acid were also studied by NMR relaxation mea-
surements, showing the potential of this technique to reveal
the pore expansion within the plant cell wall [27].
In the present work, we used 1H NMR relaxometry and

wide-line spectroscopy measurements to address this issue
on sugarcane bagasse samples undergoing a two-step pre-
treatment. First, samples were treated with diluted sulfuric
acid, and subsequently, with sodium hydroxide solutions
of increasing concentrations. Dilute sulfuric acid pretreat-
ment in the conditions applied in present work is known
to depolymerize and solubilize hemicellulose fraction,
whereas alkaline pretreatment results in substantial removal
of lignin from the residual lignocellulose [1,5,8,10,17,18,20].
Therefore, the two-step pretreatment applied here aimed
to separate the pretreatment step focused in hemicellulose
removal from the one mostly impacting the lignin fraction
of the biomass. In our previous publication [1], this



Table 1 Chemical composition of untreated bagasse and
samples that underwent acid and alkali pretreatments

Bagasse samples Bagasse composition (%)

Cellulose Hemicellulose Lignin Total

Untreated bagasse 45 ± 1 31.0 ± 0.9 28 ± 1 104 ± 4

H2SO41% 58.3 ± 0.8 8.9 ± 0.1 33.6 ± 0.1 101 ± 2

NaOH 0.25% 68.3 ± 0.6 5.4 ± 0.1 26.1 ± 0.3 99.7 ± 0.9

NaOH 0.5% 72 ± 6 3.5 ± 0.1 24 ± 6 98.7 ± 0.4

NaOH 1% 83.2 ± 0.3 3.2 ± 0.1 11.2 ± 0.8 98 ± 1

NaOH 2% 85.8 ± 0.3 3.3 ± 0.1 9.6 ± 0.5 99 ± 1

NaOH 3% 87.3 ± 0.1 3.2 ± 0.1 9.7 ± 0.5 100.1 ± 0.4

NaOH 4% 85 ± 4 3.2 ± 0.1 9.4 ± 0.4 98 ± 5

All the samples treated with the different NaOH concentrations were
previously treated with 1% H2SO4.
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pretreatment method has proved to be very efficient to
improve hydrolysis yields on sugarcane bagasse samples.
It removed up to 96% of hemicellulose and 85% of lignin
and modified the cell wall microstructure by forming
voids and separating cellulose bundles, thus improving
water and enzyme access.
Herein, we used NMR and focused on the physico-

chemical changes of sugarcane bagasse due to pretreat-
ments. In particular, we concentrate on the occurrence of
cellulose sites presenting different pore sizes, associated
with lumens and smaller pores inside the cell wall, and
interactions with water molecules. For this purpose, we
measured 1H NMR spectra and transverse relaxation
times (T2), which depend on the physicochemical features
of cellulose sites where water molecules can be accom-
modated [32-34]. Water molecules are found spatially
distributed throughout the lignocellulosic matrix and
can be thus used as probes to investigate cellulose accessi-
bility and hydrophilicity. In order to better understand the
interaction between water molecules and cellulose sites,
1H NMR measurements were performed under different
degrees of samples hydration. Since the observed 1H
NMR signal is a combined contribution from water and
cellulose molecules, the most important NMR data for
this work are those obtained from samples with higher
hydration levels, where water signal predominates. The
consistent decrease of the 1H NMR signal as a function
of sample dehydration is the most important feature of
the acquired data. This indicates that water molecules
signal is being observed, as only these molecules are
expected to be removed from the sample. For lower hydra-
tion levels (<10%) it is expected to have a higher overlap-
ping of water and cellulose signals, making it more difficult
to interpret 1H NMR data.
Results
Chemical composition
The chemical composition (cellulose, hemicellulose and
lignin amounts) for all the bagasse samples is given in
Table 1. Percentages of components are calculated on a
dry weight basis, discounting amount of ash present in
each sample. The latter biomass component was deter-
mined as the remaining inorganic fraction after the bagasse
sample had been carbonized in a muffle.
Values for cellulose include glucose, cellobiose and

hydroxymethylfurfural amounts quantified by high per-
formance liquid chromatography (HPLC). Hemicellulose
comprises xylose, arabinose, furfural, glucuronic and
acetic acids, while concentrations of soluble and insol-
uble lignins are added up to give the total lignin amount.
Mass closure was obtained by adding cellulose, hemicel-
lulose and lignin for each sample, and its total value is
given in Table 1.
Before the pretreatments, bagasse without ashes com-
prised 45% cellulose, 31% hemicellulose and 28% lignin, as
shown in the first row of Table 1. The cellulose amount
increased continuously with the acid/base pretreatments
up to between 85 and 87% under pretreatments using high
NaOH concentrations (2% or higher) in the second step.
It is important to notice that all the samples treated with
sodium hydroxide were previously treated with sulfuric
acid in the first pretreatment step. Most of the hemicellu-
lose fraction was removed in the first acid step, as shown
by its percentage decrease from about 31.0 to 8.9%
(Table 1). The hemicellulose was further removed during
subsequent alkaline steps, reaching minimum values
around 3.2% for treatments with NaOH 0.5% or higher.
Finally, the lignin relative percentage in bagasse increased
slightly with acid pretreatment due to the removal of other
components (mainly hemicelluloses) and then decreased
progressively with pretreatments using NaOH concentra-
tions between 0.5 and 2%.
Sodium hydroxide concentrations lower than 1% are

very efficient at the removal of lignin and hemicellulose
from bagasse samples. Alkali pretreatments with the
NaOH concentrations higher than 2% become progres-
sively less efficient and promote undesirable degradation
and removal of cellulose fraction [1].
Morphological changes during pretreatment
Sugarcane bagasse comes from sugarcane milling and
the bagasse morphology is thus very similar to that of
the internode region of the sugarcane stem. The tissue
of the internode is basically formed by vascular bundles,
surrounded by sclerenchymatous cells and embedded in
parenchyma [35,36]. These features are shown in Figure 1a,
where the index S indicates the sclerenchymatous tissue
and P indicates the parenchyma cells. The number of vas-
cular bundles increases from the center to the borders of
the stem, so that at the outermost region of the stem they



Figure 1 Scanning electron microscopy images of the sugarcane
bagasse. (a) untreated bagasse, transversal section showing
conducting vessels reinforced by sclerenchyma (S) and surrounded by
parenchyma (P); (b) untreated bagasse, general view of the sample after
milling, showing fibers (F) separated from the residues (R); (c) milled
bagasse treated with acid, showing that the residues are significantly
reduced after the first pretreatment step; (d) milled bagasse treated
with acid and NaOH 0.5%, highlighting the predominance of fiber.

Figure 2 Cross-section images of the sugarcane bagasse
fibers obtained by scanning electron microscopy. (a) fiber that
underwent acid treatment, showing conducting vessels with two
different diameter sizes; (b) amplification on a region of narrower
diameters. The indexes D and d indicate wider and narrower
diameters of approximately 70 and 10 μm, respectively.
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form a solid ring, while the center region generally becomes
pithy.
Parenchyma cells, which form a soft filling tissue, are

roughly separated from the conducting vessels and from
the sclerenchyma during the milling process. After mill-
ing, conducting bundles reinforced by sclerenchyma result
in more lignified and resistant sugarcane fibers, such as
the ones indicated by F in Figure 1b, while the more
fragile tissues constitute the pith residual component, as
indicated by R in Figure 1b.
The relatively high amount of pith residues initially

observed on the milled untreated bagasse is significantly
decreased as a consequence of the pretreatments. Figure 1c
shows a sample that underwent acid treatment (one step),
whereby the predominance of bagasse fibers can be
observed with only a small amount of pith. On samples
that underwent the two-step pretreatment (acid followed
by the alkaline step), only fibers can be observed in effect,
as shown in Figure 1d for a sample treated with NaOH
0.5%. Residues are thus eliminated even when the lowest
concentrations of sodium hydroxide are applied, which re-
sults in one important morphological difference between
the untreated bagasse sample, the sample treated with acid
only, and the samples treated with acid and base.
The cross sections of these bagasse fibers show that

their conducting vessels contain lumens with two distinct
size distributions: two lumens with a wider diameter, indi-
cated by D in Figure 2a, and many lumens with narrower
diameters. Figure 2b shows a magnification of the region
containing smaller lumens in a sample treated with acid
where a smaller diameter (d) is indicated.
By analyzing a large number of different images and

samples (treated and untreated bagasse), the wider lumen
diameter (D) had an average value of approximately
70 μm (72 ± 10 μm), while the narrower lumen diameter
(d) had an average value of about 10 μm (11 ± 5 μm). Cell
wall boundaries around the lumens were 2 to 5 μm thick.
Alkaline pretreatments have two important effects on

the morphology of the bagasse fibers. First, the stiff
structure of the fiber bundle is disturbed by the NaOH
action, since the fibers start to detach from the neighbor-
ing fibers even at low sodium hydroxide concentrations
(below 0.5%). As it can be observed in Figure 3a, prior to
alkali pretreatment, the bundle surface has a compact
structure with fibers closely packed together, while after
being treated with acid and NaOH 0.5% the topology of
individual fibers becomes more apparent (Figure 3b).
Under higher NaOH contents, the bundles become

even more unstructured and may present completely
independent fibers in some areas, as shown in Figure 3c
for a sample treated with NaOH 2%. Figure 3d shows a
general view of a sample treated under the same condi-
tions, showing a bundle formed by loose fibers.
In addition to the changes in the bundle structures,

alkali action has also modified the internal assembly of
the cell walls. In Figure 4a, the cross-section of a sample
treated with NaOH 1% is presented, showing the very
fragile aspect of the bundle in comparison to a sample im-
aged before the alkaline treatment (Figure 2a, for instance).
Amplification of the cell wall region reveals voids and a
damaged structure. Both effects of the alkaline treatments
must increase the sample total surface and the cellulose
accessibility by liquid media and enzymes.

Nuclear magnetic resonance relaxation
NMR relaxation data were analyzed by Inverse Laplace
transform (ILT), resulting in distributions of transverse
relaxation times (T2-distributions) [37-39]. Figure 5 shows



Figure 3 Scanning electron microscopy images of the surface
of sugarcane bagasse fibers before and after undergoing
alkaline treatments. (a) untreated sample, showing the closely
packed structure of the fiber bundle surface; (b) sample treated with
H2SO4 1% and NaOH 0.5%, with individual fibers starting to come
apart; (c) sample treated with H2SO4 1% and NaOH 2%, with
unattached and independent fibers and (d) general view of a
degraded bagasse bundle with loose fibers.
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the T2-distributions obtained for bagasse samples that
were submitted to the drying procedure being stack plot-
ted for different relative humidities. Every set of curves
corresponds to a different pretreatment.
The T2-distributions were fitted by log-Gaussian func-

tions as described in the experimental section, allowing
free adjustment of all the function parameters. The fitting
process was done by using the data obtained in the previ-
ous adjustment as initial parameters, starting from the
highest humidity (100%) for each sample studied by NMR.
In order to define the highest humidity (100%), the

excess of free water in the sample after oversaturation
was taken into account. The excess water presented the
longest observed T2 components and corresponded to an
Figure 4 Scanning electron microscopy images of the sugarcane
bagasse treated with H2SO4 1% and NaOH 1%. (a) general view of
the cross section of a fiber bundle after pretreatment and (b)
amplification on the cell wall (dashed square in (a)), showing the
surface damaged as a consequence of the pretreatments.

Figure 5 T2-distributionsversusrelative humidities for bagasse
samples. (a) Untreated, (b) H2SO4 1%, (c) NaOH 0.25%, (d) NaOH
0.5%, (e) NaOH 1%, (f) NaOH 2%, (g) NaOH 3%,(h) NaOH 4%. Darker
lines were included only to indicate extreme and intermediate
hydration levels. All the samples treated with NaOH were previously
treated with H2SO4 1%.
intense peak at the right side of T2-distributions. When the
sample was oversaturated, the high intensity of this peak
interfered with the observation of shorter components in
the T2-distribution. The definition of the 100% humidity
corresponds to the drying step in which the peak assigned
to excess free water became the smallest contribution for
the overall T2-distribution (Figure 6a, dashed line).



Figure 6 Fitting procedure. (a) Procedure to define the maximum
relative humidity (100%) exemplified for the sample NaOH 0.25%.
Dashed line represents T2-distribution for oversaturated sample;
(b) Example of fitting using three log-Gaussian functions for
sample NaOH 0.25% with relative humidity of 100%.
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To the resulting T2-distributions, it was possible to assign
three log-Gaussians for all the samples (see example in
Figure 6b), except for the case of samples treated with
NaOH 3% and NaOH 4%, for which we assigned only two
log-Gaussians. Although these log-Gaussians may overlap
each other along the T2-distributions; this fitting procedure
allows us to quantitatively estimate how each region of the
T2-distribution varies as a result of water saturation [37-39].
The log-Gaussian T2distributions were associated with

three sites with different water affinities along the sample,
corresponding to large, intermediate and small average
transverse relaxation (T2M) values. These were assigned to
wide and narrow lumens (diameters D and d in Figure 2,
respectively), and to water within the porous structure of
the cell wall (including the involucre of the lumens in
Figures 2 and 4), respectively.
Water molecules located in the different sugarcane

bagasse structures show T2-distributions ranging from
longer to shorter components of T2. Longer T2 compo-
nents were associated with higher mobility water mole-
cules located in the core of the vessels with two different
diameter sizes (Figure 2), while shorter T2 components
were associated with water molecules with lower mobil-
ity, sorbed at the cell wall around the lumens. The water
molecules with shorter T2 components had their mobility
reduced due to the intense hydrophilic interactions. In
fact, water molecules in the sugarcane bagasse matrix
showed a continuous dynamics distribution, ranging from
low mobility molecules (cellulose-sorbed water molecules)
to very mobile ones, however not reaching bulk water
dynamics. This was a consequence of the small diameters
of the conducting plant lumens (about 10 and 70 μm),
which caused the water molecules to experience the
mobility restriction imposed by the cellulose surfaces. In
the case of the sample treated with NaOH 0.25%, for
example, three log-Gaussians could be identified when
this sample was fully hydrated (100%; Figure 6).
Continuous drying of the sample introduced a steady

decrease in the T2M values associated with the water
molecules within the wide and narrow vessels, until it
reached considerably small values (at around 20% humid-
ity), comparable to those observed for water confined
within the cell wall (at humidity equal to 100%). These
results suggest that the more mobile water molecules
are easily removed during the initial steps of the drying
procedure and, at the end of the process, only water
molecules contained within the cell wall around the
lumens remain in the vessels. This is the region associated
with the cellulose surface.
Figures 7 and 8 show the total and partial moisture

contents (MC) of bagasse samples and the average T2M

values versus relative humidity, respectively. Partial mois-
ture contents refer to water from different environments
(narrow and wide lumens and water associated with
cellulose surface within the cell wall).
The vertical shaded areas in both Figures 7 and 8 indi-

cate the measurements for which T2M and MC are very
difficult to estimate due to the very low amount of water
(humidity lower than 10%) and very short relaxation
times. The horizontal shaded area in Figure 8, including
average relaxation times (T2M) of the order 600 μs or
shorter, indicates a region where the ILT presents greater
errors when obtaining the T2-distributions due to the sig-
nal sampling rate employed in the Carr-Purcell-Meiboom-
Gill (CPMG) experiments [Carr1954,Meiboom1958].
Therefore, it is important to point out that only a few
experimental points are presented in these regions be-
cause they are challenging to detect using NMR relaxation
methods. In this region one can also expect to have super-
position of water and cellulose 1H NMR signals. These
data points are shown in Figure 8 just to indicate the 1H
NMR water molecules T2 trends for low sample humidity.
Additional information about water under these two con-
ditions can be accessed by 1H NMR spectroscopy, which
will be presented and discussed shortly.
From Figure 7, besides following the correlation between

total and partial moisture contents (MC) and relative hu-
midity, one can observe that water in the lumen cores is
easier to remove than the water in the internal part of the
cell wall. Comparison of the curves also reveals that the
narrow lumens contain the highest amount of water.
The T2M values measured for all regions of the sample

tend to be shorter values when the relative sample humidity
or moisture content decreased during the drying procedure
(Figure 8). This result is expected since the water molecules
within lumen cores are easier to remove by drying, while
water molecules sorbed on the cell wall tend to remain in
the sample. It is worth mentioning that the T2M values
observed for water molecules sorbed inside the walls (at
100% relative humidity) are similar to those measured for
water molecules associated with narrow and wide lumens
at relative humidities below 20%. This result indicates that
the remaining water molecules, even in the lumens, are
sorbed on the cell wall.



Figure 7 Evolution of total and partial moisture content (MC) versusrelative humidity for bagasse samples treated under different conditions.
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Taking into consideration samples with 100% humid-
ity, one can observe (Figure 9) that the T2M values tend
to decrease as a function of the pretreatment, being
smallest for the most concentrated NaOH solution (4%).
This indicates that water molecules have, on average, lower
dynamics for the samples treated under higher NaOH
concentrations, which could present higher hydrophilicity
due to continuous removal of lignin (see Table 1), the
hydrophobic component of plant structure. Similar trends
are observed for the other sample humidities. Figure 9
shows also the hydrolysis yields as a function of pretreat-
ment steps, which reveals a correlation of the hydrolysis
yields with T2M values. This indicates that substrates with
increased water accessibility correspond to those with
higher hydrolysis yields, according to results of enzymatic
digestibility previously reported for these samples.

Nuclear magnetic resonance spectroscopy
1H NMR spectra were obtained for all bagasse samples
treated with NaOH. Figure 10 shows a typical spectra
obtained following the drying procedure for the sample
treated with NaOH 3%. Similar results were observed
for all the other samples (not shown).
From Figure 10a one can directly identify at least two

components in the spectra: a central lorentzian-like line
relatively narrow (~kHz) and a broadened Pake powder
pattern [40] with a dipolar coupling constant (δ) of
about 50 kHz.



Figure 8 T2M versus relative humidity for bagasse samples treated under different conditions.
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In the fitting analysis, it was possible to identify a third
wide Gaussian spectral component of approximately
50 kHz, which was superimposed to the Pake powder
pattern. The lorentzian-like line was assigned to more
mobile water molecules located in the core of both large
and small vessels, and also within the cell wall around the
lumens, also observed in the relaxation measurements. As
opposed to the case of relaxation measurements, mobile
water molecules located in the core of both wide and
narrow lumens, as well as inside the cell wall, could not
be distinguished from the spectra (Figure 10). For this rea-
son,T2 relaxation measurements are more appropriate for
studying mobile water molecule dynamics.
Since the intensity of the Pake pattern remained practic-

ally constant during drying process, it could be assigned
to both polycrystalline cellulose and/or water molecules
strongly bound to the surface of polycrystalline cellulose
microfibrils. Similar assignment could be attributed to the
wide Gaussian component in the spectra, however, associ-
ating it with amorphous cellulose. The above assignments
are corroborated by the fact that the cellulose samples
presented crystallinities of about 70% [41], a percentage
that can be obtained directly from the ratio of the signal
observed for Pake and Gaussian spectral components for
MC >10%. 2H NMR should be used for the correct study
of water molecules dynamics under low humidity levels.
It is important to mention that the strongly bound

water molecules observed by NMR spectroscopy are not
the same as observed by NMR relaxation, because they
would present very short T2 components of the order of



Figure 9 T2M values and hydrolysis yields versus pretreatment
conditions for samples with 100% humidity. All samples treated
with NaOH were previously treated with H2SO4 1%. Shaded area
evidences the samples with NaOH treatment.
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1/δ, approximately 20 μs, far below the estimated short-
est observable average relaxation time obtained by relax-
ation experiments (approximately 600 μs), as shown in
Figure 11b. Having these three spectral components in
mind, the line widths Δν (full with at half maxima) and
dipolar coupling constant δ were estimated according to
Figure 11.
As can be observed in Figure 11, mobile water molecules

located in the core of both large and small vessels, as well
as the waters contained within the cell wall, were relatively
easy to remove by drying. Conversely, the water molecules
putatively strongly bound to cellulose surfaces, sorbed on
polycrystalline or amorphous cellulose structures, were
practically irremovable. While the estimated partial mois-
ture content of polycrystalline cellulose remained constant
during the drying procedures, this parameter for amorph-
ous cellulose started decreasing when relative humidity
Figure 10 1H NMR spectra as a function of the drying procedure.
Botton spectra obtained for the bagasse sample treated with NaOH
3%. Zooms of (a) vertical and (b) horizontal axes. Darker lines were
included only to indicate extreme (<1 and 100%) and intermediate
(20%) hydration levels.
dropped below 10%. As already mentioned, this issue
should be studied in detail by the use of 2H NMR. Efforts
in this direction are being undertaken by our group.

Discussion
The chemical pretreatments applied to sugarcane bagasse
introduced changes in chemical and physical characteris-
tics of this material. As can be observed in Table 1, the
acid pretreatment removed most of the hemicellulose
present in the samples. On the other hand, the second al-
kaline step of the pretreatment was mostly responsible for
the removal of lignin (Table 1) and for the morphological
changes in the cell wall around the lumens (Figures 3 and
4). The removal of these components changed the poros-
ity of the cell wall on a scale observable by SEM, forming
voids and opening the closed structure of the untreated
bagasse fibers, as can be observed in Figure 4. NMR data
confirmed the changes observed by SEM according the
discussions below.
The log-Gaussian T2-distributions obtained indicated

the existence of water molecules under three different de-
grees of mobility on sugarcane samples. The most mobile
molecules, presenting longer T2 components, occupied
the core of wide and narrow lumens. The most hindered
ones, with the shortest T2 components, were located
within the internal structure of the cell wall. The inter-
mediate T2 values were associated with water molecules
present in regions where a cooperative combination of
high and low mobility defined the average values of the
observed relaxation times.
The general model of the plant cell wall describes its

composition as an entangled assemble formed by cellu-
lose microfibrils immersed in a matrix of hemicellulose
and cross-linked lignin [42]. The schematic representation
of a model of spatial distribution of the cell wall compo-
nents is shown in Figure 12. Part of the (more mobile)
water molecules is contained inside the vacant lumens,
shown in Figure 12a. On the other hand, the water mole-
cules with more restricted mobility are contained within
the cell wall surrounding the lumen (Figure 12a). A de-
tailed picture of the cell wall (Figure 12b) shows that these
waters would be permeating cellulose fibrils and the other
components of the wall, establishing hydrophilic interac-
tions. In all cases, water mobility differs from that observed
on bulk molecules because even the more mobile water
molecules contained in the lumens (diameters of about 10
and 70 μm) are more confined than they would be in the
bulk, due to interactions with the cell wall surfaces.
The behavior of the water populations under the dry-

ing process is shown in Figures 7 and 8. While the T2M

values associated with cellulose fibrils did not change
significantly during the drying procedure, the T2M values
from water in the wide and narrow vessels kept continu-
ously decreasing until relative humidity was about 20%.



Figure 11 Nuclear magnetic resonance spectroscopy results. (a) Total and partial moisture content estimated from the1H NMR spectra; (b)
line widths (Δν) and dipolar coupling (δ) as a function of relative humidity for the bagasse sample treated with NaOH 3%. Shaded areas in both
plots indicate the regions where the quality of NMR relaxation measurements would be poor due to low signal-to-noise ratio.
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This indicates that in the initial steps of the drying
procedure water is first being removed from the cores of
lumens and, at the end of the process, the only water
molecules remaining in the samples are those located
inside the cell walls under different degrees of mobility,
with the most confined water populations non-covalently
bound to cellulose fibers.
Besides the effect of pretreatments in increasing the

porosity of the complex microstructure of the cell wall,
the ratio of its hydrophilic to hydrophobic components is
also being modified. In particular, lignin removal performed
by alkali pretreatments promotes sample hydrophilicity,
since lignin network is highly hydrophobic. This effect is
probably responsible for the changes in T2M values with the
different pretreatments observed in Figure 9. The curves
for the three distinct T2M values associated with the
Figure 12 Structure of the plant cell wall. (a) Cross section of the bagas
representation of the spatial distribution of the cell wall components and o
(c) scheme of the transversal section of a cellulose microfibril; (d) cellulose
different water environments show a steady decrease in
T2M times in relation to increases in NaOH concentra-
tions, indicating increased hydrophilicity of the surfaces as
a consequence of lignin removal. An interesting feature
to be noticed is that the T2M values associated with the
cellulose surfaces inside the cell wall (triangles in Figure 9)
decrease more rapidly with the NaOH pretreatments than
the curves of T2M values related to lumens. This indicates
that these regions are severely modified by the pretreat-
ments and that the conditions applied to decrease the cell
wall hindrance of these samples are being efficient. The
stronger interaction between the water molecules and the
surface of the bagasse treated under alkaline conditions
is in agreement with our previous results reported for
the enzymatic digestibility of these samples [1]. Table 2
shows the yields of enzymatic hydrolysis after 48 hours
se cell wall, showing the involucre of the lumens; (b) schematic
f the internal structure of the region amplified from the wall in (a);
fibrils are formed by cellulose polymeric chains.



Table 2 Results for total hydrolysis yields obtained from
bagasse samples after 48 hours under enzyme action [1]

Bagasse samples Enzymatic hydrolysis (48 hours)

Total hydrolysis yield, %

Untreated bagasse 22.0 ± 0.3

H2SO41% 30.3 ± 0.3

NaOH 0.25% 47.1 ± 0.9

NaOH 0.5% 79 ± 2

NaOH 1% 100 ± 7

NaOH 2% 97 ± 2

NaOH 3% 96 ± 10

NaOH 4% 97 ± 20

Hydrolysis yield values are expressed as an average (± standard deviation) of
duplicate determination. All the samples treated with NaOH were previously
treated with 1% H2SO4.
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of enzyme action obtained in bagasse samples treated
under different conditions. The hydrolysis yield in each
case is obtained by dividing the total amount of glucose
liberated from a sample by its total cellulose content. As
can be observed on Table 2 and in Figure 9, the hydrolysis
efficiency is highly improved as the samples undergo the
two-step pretreatment. While only 22% of the cellulose
amount was converted to glucose in untreated bagasse,
hydrolysis yields above 95% were obtained in samples
treated under NaOH concentrations of 1% or higher.
These results confirm the correlation between the pre-
treatment efficiency, the water interaction with the cell
wall and the enzyme accessibility to these substrates.
Since T2M times are directly related with the general
phenomenon involving improved interactions between
water molecules and the cell wall components and their
increased wettability, it is tempting to speculate that the
same method can be applied for semiquantitative evalu-
ations of the efficiency of enzymatic hydrolysis of the
biomass samples subjected to other types of pretreatments.
This might allow for the use of the inexpensive and non-
destructive low-field 1H NMR relaxometry technique for
semiquantitative predictions of the enzymatic hydrolysis
efficiency of biomass samples.
The two first points in each curve of Figure 9 shows

the distinctive behavior of the T2M values from untreated
bagasse and from bagasse treated with H2SO4 when
compared to the other samples that underwent alkaline
pretreatments. This is probably associated with the dif-
ferent morphological characteristics of these samples.
SEM images presented in Figure 1 show that these two
samples are formed by two main features: bagasse fibers
and pith residues. However, the samples that underwent
the alkaline pretreatment contain practically only bagasse
fibers. This fact indicates that the distinct behavior of
these two samples might be related to the presence of
residual material besides the lumen structures.
Conclusions
Morphological changes of sugarcane bagasse samples,
promoted by two-step pretreatments, change the water
interaction and accessibility to different sites of the sug-
arcane cell wall. Based on the information obtained from
SEM and NMR, we were able to identify water mole-
cules located in the lumens core (high mobility) and in
the internal part of the cell walls (low mobility).
Pretreatments also change the ratio of hydrophilic to

hydrophobic components of the cell wall matrix, thus
modifying interactions between water molecules and the
different binding sites of the sample. The samples in
which the water interaction with the bagasse cell wall is
facilitated by the pretreatment are also the ones that
present improved enzymatic hydrolysis yields. Our results
show that non-destructive 1H NMR relaxometry might be
used as an inexpensive and practical method for semi-
quantitative determination of the efficiency of enzymatic
hydrolysis of plant biomass samples.
Methods
Materials
Grounded sugarcane bagasse was kindly provided by the
Cosan Group (Ibaté, São Paulo, Brazil), and used as re-
ceived, without further washing or milling. During the
industrial milling process, bagasse was washed with hot
water at 70°C to remove soluble sugars. Prior to pretreat-
ments, grounded bagasse was passed through a 9.8 mm
sieve to limit the maximum particle size and then dried in
a convection oven at 60°C for 24 hours. Sulfuric acid and
sodium hydroxide for sample pretreatments were pur-
chased from JT Baker (Mexico City, Mexico) and from
Mallinckrodt Chemicals (Linköping, Sweden), respectively,
and were used as received.
Bagasse pretreatments
Sugarcane bagasse was initially hydrolyzed with diluted
H2SO4 (1% v/v in water) for 40 minutes at 120°C. The
pressure was kept at 1.05 bar and a 1:10 solid to liquid
ratio (gram of bagasse/ml of solution) was used. Bagasse
solid fraction was separated from the hydrolysate by
filtration and abundantly washed with tap water to
eliminate acid excess before oven drying at 60°C for
24 hours. A second pretreatment step for bagasse delig-
nification followed, using one of the following NaOH
solutions with increasing concentrations (0.25, 0.5, 1.0,
2.0, 3.0 or 4.0% w/v), at 120°C for 40 minutes. Six pre-
treated bagasse samples were then obtained by filtra-
tion; washing until neutral pH is reached and drying of
the solid in oven for 24 hours at 60°C. Enzymatic hydroly-
sis assays were carried out on pretreated bagasse samples,
as described in [1].
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Chemical composition
The percentage amounts of cellulose, hemicellulose and
lignin in bagasse were determined as described in detail
elsewhere [1]. Raw bagasse was previously extracted in
95% ethanol and all the samples were milled until able
to pass through a 2 mm sieve before undergoing total
acid hydrolysis, using a 72% (v/v) H2SO4 solution. Solid
fraction was separated from the hydrolysate by filtration
though quantitative filter paper, rinsed until neutral pH
and then oven dried at 105°C to a constant weight
(containing insoluble lignin and ash). Ash content was
then determined by calcination in a muffle (EDG 10PS,
São Carlos-SP, Brazil) at 800°C for 2 hours, and used to
determine the insoluble lignin amount by subtraction.
Soluble lignin was determined by absorbance measure-

ments (280 nm) using a UV-VIS spectrophotometer (model
Lambda 25, Perkin Elmer, Waltham, MA, USA), and taking
into account the interfering absorption of furfural and
hydroxymethylfurfural, as previously described [43].
The hydrolysate was also analyzed by HPLC to determine

sugars, organic acids, furfural and hydroxymethylfurfural.
HPLC determinations were performed in a Shimadzu LC-
10 AD chromatograph (Shimadzu, Kyoto, Japan) equipped
with refractive index and UV-VIS detectors (Shimadzu
SPD-10, Kyoto, Japan). A detailed description of the col-
umns, mobile phases and analytical conditions employed
can be found in Rezende et al. [1].

Nuclear magnetic resonance
1H NMR relaxation measurements were carried out using
a LapNMR console (Tecmag, Houston, USA) and a per-
manent Bruker magnet (Bruker, Billerica, USA) operating
at 0.47 T (20 MHz). Transverse relaxation times (T2) were
measured using CPMG sequence [44,45], with π/2 radio-
frequency (rf) pulses of 6.6 μs, delay between π pulses of
60 μs, and recycle delay of 15 seconds. NMR relaxation
data were analyzed by ILT, resulting in a distribution of
transverse relaxation times (T2-distributions). The T2-
distributions were analyzed by least-squares fitting
using logarithmic-Gaussian (log-Gaussian) functions, ac-
cording to the expression:

F τð Þ ¼ Ae
−1
2 log τ

T2M

� �
=σ

� �2

ð1Þ

where A is proportional to the number of water mole-
cules, which was used for estimating the total and partial
moisture contents (MC) of bagasse samples, T2M is the
average transverse relaxation value, and σ is the full
width at half maximum of the distribution.

1H NMR spectra were acquired using a Varian UNITY
Inova spectrometer (Varian, Palo Alto, USA) operating
at 8.22 T (350 MHz) and a 7-mm Jakobsen static probe
(Varian, Palo Alto, USA). A single π/2 pulse sequence
was used to obtain the free induction decays (FIDs) and
respective spectra, with rf pulses of about 3.5 μs long
and recycle delays of 7 seconds.
NMR experiments were carried out along a drying

procedure consisting of submitting the wet samples to
subsequent steps of 5-minutes drying under vacuum at
60°C. Samples were weighed before every NMR experi-
ment, in order to evaluate hydration levels.

Scanning electron microscopy
Bagasse morphology was analyzed by SEM before and
after undergoing pretreatments. Samples from surfaces
or transversal sections (obtained by fracture in liquid
N2) were oven dried and coated with Au in a SCD 050
sputter coater (Oerlikon-Balzers, Balzers, Liechtenstein)
Sample imaging was carried out using the scanning elec-
tron microscopes, models DSM 960 (Zeiss, Oberkochen,
Germany) or JSM 5900LV (Jeol, Tokyo, Japan).
Sample features such as lumen diameters and cell wall

thickness were manually measured using the program
Axio Vision 4.8 (Carl Zeiss, Oberkochen, Germany). Aver-
aged values of the lumen diameters were obtained by
measuring about 350 lumens from different regions of
raw bagasse and treated samples (four images by sample).
Since most of the lumens have a distorted circumferential
aspect, two diameters were measured: the maximum
and the minimum axis, approximately perpendicular to
each other, so that a mean diameter could be obtained
for each lumen.
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