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Abstract 

Background:  The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted 
for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are 
limited in their hydrolytic potential. The reasons for this are not understood.

Results:  In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and 
chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence 
that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in 
the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affili-
ated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant 
feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in 
the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an 
equal distribution of these enzymes was observed in the elephant feces sample.

Conclusions:  Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bac-
teroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic 
enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH 
enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial 
deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial 
hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibro-
bacteres in biogas fermenters will most likely result in an increased hydrolytic performance.

Keywords:  Anaerobic digestion, Biogas, Biofuels, Biorefinery, Lignocellulosic biomass, Metagenomics, Cellulases, 
Microbial communities, PULs
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Background
In the context of climate change, the production of 
biogas as a renewable energy form has become increas-
ingly attractive over the last two decades. Biogas is com-
posed of mainly methane and carbon dioxide, which are 
produced in a complex and anaerobic microbial process 
[1]. While the main microorganisms and mechanisms 
involved in the methane production are well known, 
the overall process of the microbial biogas produc-
ing communities, starting with the anaerobic diges-
tion of the biomass to the final end product, is not well 
understood [2–5]. Previously, it has been reported that 
the anaerobic degradation of the plant biomass and the 
subsequent generation of biogas require the close inter-
action of many different and phylogenetically diverse 
microorganisms. Published research implies that the 
diversity ranges from several hundred to several thou-
sand microbial species in active biogas reactors [3, 4, 6, 
7]. Interestingly, it was further reported that the overall 
production of biogas is probably limited due to the rela-
tively slow hydrolysis of the agricultural plant biomass 
[8]. Thereby, Clostridia appear to play a major role dur-
ing the initial biomass degradation. In fact, they are the 
dominant class of hydrolytic organisms in the biogas fer-
menters [8]. Numerous cellulolytic Clostridia produce 
cellulosomes. Cellulosomes are large multi exoenzyme 
complexes, whose purpose is the efficient degradation of 
cellulose [9, 10]. These membrane-associated complexes 
can be visualized using electron microscopy [11]. While 
the clostridial systems are, perhaps, the most competi-
tive group within biogas fermenters, they are less domi-
nant in natural digestive organs, such as the cow rumen 
or the gut of other studied herbivorous animals. Within 
this context, recent research has uncovered that the Bac-
teroidetes are present in virtually all rumen, gut, and 
fecal samples of herbivores. Here, they usually represent 
the predominant bacterial group, besides the Firmicutes 
[12–19]. In contrast to clostridial organisms, bacteria of 
the phylum Bacteroidetes do not produce cellulosomes. 
However, they are associated with the production of 
very versatile polysaccharide utilization loci (PULs). 
PULs are prevalent in the phylum of Bacteroidetes and 
have only recently attracted increasing attention. Evi-
dence is mounting that PULs might play an important 
part in the breakdown of cellulose [20]. Furthermore, 
it was recently proposed that cellulolytic PULs might 
be considered as an alternative system for the degrada-
tion of cellulose, next to cellulosomes and free-enzymes 
[21]. PULs, which were originally described as starch 
degradation operons, have been predicted in up to 67 
Bacteroidetes genomes until now. They can be described 
as a set of genes organized around an SusC and SusD 
gene pair [22]. Intrigued by the differences between the 

composition of the microbiomes of natural cellulolytic 
systems and biogas fermenters, we wanted to investi-
gate how these differences may affect the ability to effec-
tively degrade biomass in biogas plants. In this study, we 
employed deep metagenome sequencing in combina-
tion with RNA-Seq to obtain detailed insights into the 
glycoside hydrolase enzymes (GHs), mainly employed in 
carbohydrate hydrolysis in different cellulolytic systems. 
Within this paper, we provide evidence that in published 
natural cellulolytic systems of herbivorous animals the 
ratio of the Firmicutes vs. Bacteroidetes is almost 1:1 
[14–18, 23, 24]. In contrast, in a technical system, such 
as biogas fermenters the Firmicutes outcompete the 
Bacteroidetes by four-to-six-fold [2–4, 25]. In line with 
this observation, we show that the overall abundance of 
potential glycoside hydrolase genes is lower in the biogas 
fermenter compared to two natural systems due to an 
underrepresentation of typical rumen and gut bacteria. 
Furthermore, we wanted to know, if these differences are 
associated with the predominant transcription of certain 
GH families, possibly allowing a more efficient degrada-
tion of the plant biomass.

Methods
Total DNA extraction from an agricultural biogas fermenter 
sample
Samples were taken from the fermenter of an agricul-
tural biogas plant located near Cologne (Germany) in 
March and May 2013. At the time of sampling, the biogas 
plant was running under steady conditions. It produced 
536 kW output and was fed with maize silage (69 %), cow 
manure (19  %), and chicken manure (12  %). Fermenta-
tion took place at 40 °C and a pH value of 8 in a 2800 m3 
fermenter. Total DNA was isolated (Isolation 1) using the 
QIAamp DNA Stool kit from Qiagen (Hilden, Germany) 
according to the manufacturer’s protocol for pathogen 
detection. For this isolation, 2  g of fermenter material 
were used and the reaction steps were scaled up accord-
ingly. Heating of the suspension was carried out at 95 °C.

For metagenome sequencing, an additional DNA iso-
lation (Isolation 2) from the May sample was conducted 
using a CTAB-based method according to Weiland–
Bräuer [26]. 1.5  g of sample material was mechanically 
disrupted using a Dismembrator U instrument (Sarto-
rius AG, Göttingen, Germany). Subsequently, 2.7  ml 
DNA extraction buffer with 5 % CTAB was added to 1 g 
of homogenized material. Extracted DNA was highly 
contaminated by humic acids indicated by brownish 
to yellow color. Contamination was removed using the 
FastDNA™ SPIN Kit for Soil (MP Biomedicals, Solon, 
Ohio, US), excluding the initial lysis steps. Purity of DNA 
was analyzed using a Nanodrop ND-2000 instrument 
(PEQLAB Biotechnologie GmbH, Erlangen, Germany).
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Amplification and sequencing of 16S rRNA genes
Variable regions of bacterial 16SrRNA genes were ampli-
fied as previously published [15] with minor modifica-
tions. The V3–V5 region was amplified using the primer 
set: V3 for 5′-CCATCTCATCCCTGCGTGTCTCCGAC 
TCAGACGCTCGACACCTACGGGNGGCWGCAG-3′ 
and V5rev 5′-CCTATCCCCTGTGTGCCTTGGCAGTC 
TCAGCCGTCAATTCMTTTRAGTTT-3′. The prim-
ers contained Roche 454 pyrosequencing adaptors, keys, 
and one unique MID per sample (underlined). To target  
archaeal 16SrRNA genes, the V4–V6 region was ampli-
fied using the primer set: A519F 5′-CCATCTCATCCCT 
GCGTGTCTCCGACTCAGATATCGCGAGCAGC 
MGCCGCGGTAA-3′ and A1041R 5′-CCTATCCCCT 
GTGTGCCTTGGCAGTCTCAGGGCCATGCACCW 
CCTCTC-3′. The PCR reaction (50  µl) contained 0.5  U 
of Phusion High-Fidelity DNA Polymerase (Thermo Sci-
entific, Braunschweig, Germany), 10  µl 5× Phusion GC 
Buffer, 200  µM of each dNTP, 2.5  % DMSO, 1.5  mM 
MgCl2, 4  µM of each primer, and 20  ng isolated DNA. 
PCR cycling conditions were: initial denaturation at 98 °C 
for 3 min, followed by 28 cycles of denaturation at 98 °C 
for 30 s, annealing at 61 °C for 30 s (archaeal primer set: 
66  °C), and extension at 72  °C for 25 s. The final exten-
sion was conducted at 72 °C for 5 min. Negative controls 
were performed with H2O instead of template DNA. The 
obtained PCR products were purified via Gel/PCR DNA 
Fragments Extraction Kit (Geneaid Biotech, Taiwan) 
as recommended by the manufacturer. Three separate 
PCR reactions were conducted for each sample. After gel 
extraction, the reaction products were pooled in equal 
amounts. The 16S rRNA gene sequencing was performed 
at the Göttingen Genomics Laboratory using a Roche 
GS FLX++ 454 pyrosequencer with titanium chemistry 
(Roche, Branford, USA).

Processing and analysis of 16S rRNA genes
Pyrosequencing derived raw sequences were processed 
according to Wemheuer et  al. [27], with the following 
modifications: After raw data extraction, reads shorter 
than 300  bp and those possessing long homopolymer 
stretches (≥8  bp) or primer mismatches (>3  bp) were 
removed. The sequences were denoised employing Aca-
cia version 1.53b [28]. Chimeric sequences were, sub-
sequently, removed using UCHIME in de novo and in 
reference mode using the SILVA SSU database (SSURef 
119 NR) as reference data set [29, 30]. All non-bacte-
rial as well as singletons OTUs (OTUs containing only 
one sequence) were removed according to Schneider 
et  al. [31]. The remaining 16S rRNA gene sequences 
were uploaded to the SILVA NGS (SILVA Next-Gener-
ation Sequencing) server for taxonomic classification 
[29]. Microbial taxonomy was determined using SILVA 

version 119 and default settings with one adjustment: 
The cluster sequence identity threshold was increased 
to 0.99. Rarefaction curves, diversity indices, and shared 
OTUs were calculated employing the QIIME 1.8 software 
package [32].

Metagenome sequencing and de novo assembly
20 ng DNA was sheared with the Bioruptor® (Diagenode; 
7 times for 15  s on/90  s off) and libraries were gener-
ated using the NEBNext® Ultra™ DNA Library Prep Kit 
for Illumina® as recommended by the manufacturer. Size 
and quality of the libraries were assessed using a BioAna-
lyzer High Sensitivity Chip. Diluted libraries (2 nM) were 
multiplex-sequenced on the Illumina HiSeq 2500 instru-
ment. Initially, one lane was sequenced for each DNA 
isolation in paired end mode (2  ×  101 bases). Subse-
quently, a second lane was sequenced for DNA isolation 
2 using the same conditions. The number of generated 
reads is indicated in Table 1. Sequencing was carried out 
at the Heinrich-Pette-Institut in Hamburg, Germany. 
Sequencing adapters were removed using Trimmomatic 
0.33 [33]. Different de novo assemblies were performed 
using either the IDBA-UD 1.1.1 [34] or Ray Meta v.2.3.1 
[35] assembler (Table 1).

Binning of metagenomic contigs
For metagenomic binning, the assembly was performed 
using the Ray Meta assembler with a k-mer length of 31. 
Contig coverage was determined by mapping the initial 
reads to the contigs using the short-read mapper BBMap 
(BBMap, Bushnell B., sourceforge.net/projects/bbmap/). 
Subsequently, Samtools [36] was used to convert, sort, 
and merge the sam files. After that, BEDTools [37] were 
used to calculate contig-wise average coverage. As low-
coverage and short contigs are known to be error-prone 
[38], contigs with a length <1 kb and average coverage <3 
were discarded from the assembly.

Taxonomic profiling of reads was performed by a 
sequence similarity search using blastx (NCBI-BLAST 
2.2.26, e-value <0.1) [39] against a database of universally 
conserved proteins which occur in 98 % of all eukaryotes, 
bacteria, and archaea. The database was clustered to a 
sequence similarity level of 97 % to remove redundancy. 
Blast results were taxonomically assigned by MEGAN 
[40] with min. bitscore 60 and min. support percent 0.05, 
and visualized by Krona 2.5 [41].

Taxonomic profiling of contigs was performed using 
AMPHORA2 [42] using the universal marker set of 31 
genes. NCBI taxonomy ids were mapped to phyloge-
netic lineages given by AMPHORA2. The comparison 
between read-based and assembly-based communities 
was made to verify the consistency between the sample 
and the assembly. The visualization software Elviz [43] 
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was used to visualize contig coverages, length, GC con-
tent, taxonomy, and to assess possible binning strategies. 
For binning based on composition and differential cover-
age data, the software CONCOCT was used with default 
parameters [44]. As suggested in the CONCOCT docu-
mentation, contigs were cut up into sequences of 10 kb 
length. Subsequently, mapping of the initial reads was 
carried out using Bowtie2 [45] to determine the cover-
age of these contigs. Checkm 1.0.3 [46] was used to assess 
the completeness and contamination of the bins. Strongly 
contaminated bins were inspected by VizBin [47], which 
allowed a further separation of bins, if they formed two 
or more distinct clusters. Genes encoding presumable 
carbohydrate-active enzymes were annotated based on 
sequence similarity to sequences in the CAZY data-
base [48]. The CAZy database (May 2015) was down-
loaded using a custom Python script. After this, a blastp 
sequence similarity search [49] of open reading frames, 
which were extracted from the assembly using getorf 
[50], was performed against the CAZy database using 
default parameters and an e-value cutoff of 1e–20.

All bins with completeness >80 %, contamination <10 % 
and heterogeneity (of the contamination) <50 % were clas-
sified as “high quality”. Contigs belonging to these bins 
were removed from the assembly. According to the CON-
COCT workflow, the remaining contigs were binned again 
using CONCOCT. The resulting bins were again evaluated 
using Checkm. The taxonomy of the bins was obtained 
from the AMPHORA2 results by determining the consen-
sus lineage of all bin-specific marker genes (cut-off con-
fidence scores >0.8). Annotation of the genome bins was 
performed using the annotation framework ConsPred 
V1.21 (http://sourceforge.net/p/conspred/wiki/Home/). In 
the file “conspred_input_specification.txt”, the parameters 
“taxon exclude”, “minimal number rRNA”, and “minimal 
number tRNA” were set to “0”.

Identification of carbohydrate‑active gene candidates, 
PULs, and cellulosomal scaffoldin proteins
The assembled metagenomic contigs (biogas and ele-
phant) and scaffolds (cow) were subjected to gene pre-
diction using Prodigal 2.6.1 in meta mode [51]. The 
number of predicted open reading frames (ORFs) for the 
respective metagenome is indicated in Table  4. Amino 
acid sequences of the predicted ORFs were screened for 
similarity to glycoside hydrolase (GH) families and car-
bohydrate esterase (CE) families as classified in the CAZy 
database [48]. For this screening, profile hidden Markov 
models (HMMs) based on the respective CAZy families 
were downloaded from the dbCAN database [52] and 
compared to the protein sequences using hmmscan of 
the HMMER 3.1b1 software package (hmmer.org). All 
resulting hits were processed as recommended by the 

author of the dbCAN database. First, overlapping hits 
were removed; the hit with the higher e-value was dis-
carded. Hits not covering at least 30 % of the respective 
HMM were also removed. For the remaining hits, an 
e-value cutoff of 1e–5 for alignments longer than 80aa 
and 1e–3 for alignments shorter than 80aa was applied. 
For the GH109 family, a custom made model was used 
and the covered fraction of the HMM was increased to 
55  %. Duplicate hits in the family GH74 were removed 
by hand. To identify potential bacteroidetal PULs, the 
dbCAN database was extended by two additional mod-
els: a model for SusD like proteins (PF07980) down-
loaded from the Pfam database (http://www.pfam.xfam.
org/) and a model for TonB-dependent receptor/SusC 
like proteins (TIGR04056) downloaded from the TIGR-
fam database (http://www.tigr.org/TIGRFAMs). To iden-
tify potential cellulosomal gene clusters in the respective 
metagenomic data set, we used amino acid sequences 
of known cellulosomal scaffolding proteins for an itera-
tive protein sequence similarity search via Jackhmmer 
(hmmer 3.1 package). For this search, a score cut-off 
value of 700 was applied, and the following scaffoldin 
query sequences were used (NCBI accession numbers 
and organism names in brackets): cbpA (AAA23218.1, 
Clostridium cellulovorans), CipC (AAC28899.2, Clostrid-
ium cellulolyticum H10), cipA (BAA32429.1, Clostridium 
josui), cipA (AAK78886.1, Clostridium acetobutylicum 
ATCC 824), cipA (Q06851, Clostridium thermocellum), 
ScaA (AAG01230.2, Pseudobacteroides cellulosolvens), 
ScaB (AAT79550.1 Bacteroides cellulosolvens), and ScaB 
(CAC34385.1, Ruminococcus flavefaciens 17). To allow 
a comparison between the different sized assembled 
metagenomic data sets, the number of potential GH and 
CE gene hits was normalized to 1 Gb of assembled DNA 
for all comparative analysis.

Taxonomic assignment of carbohydrate‑active gene 
candidates
Amino acid sequences of ORFs, which were previously 
assigned to GH families associated with cellulases and 
CE families, were used for a protein blast search against 
the NCBI non-redundant database. The number of maxi-
mal target sequences was decreased to 20 and an e-value 
cutoff of 1e–2 was employed for this search. Next, all 
obtained hits were loaded into MEGAN5 [40] and the 
lowest common ancestor (LCA) algorithm (default set-
tings, unless otherwise specified) was used to classify the 
sequences taxonomically.

RNA extraction and sequencing from an elephant feces 
sample
A feces sample from an adult female zoo elephant was 
taken in April 2014 in the same way and from the same 

http://sourceforge.net/p/conspred/wiki/Home/
http://www.pfam.xfam.org/
http://www.pfam.xfam.org/
http://www.tigr.org/TIGRFAMs
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animal described in the publication by Ilmberger et  al. 
[15] living in the Hagenbeck Zoo in Hamburg, Germany. 
The sample was transported to the lab on ice and then 
stored at −70 °C. Isolation of ribonucleic acids for RNA-
Seq was carried out using the PowerMicrobiome™ RNA 
Isolation Kit from Mo Bio Laboratories (Carlsbad, Ger-
many) as recommended by the manufacturer. In a next 
step, ribosomal RNA was depleted using the Ribo-Zero™ 
rRNA Removal Kit for Bacteria (Illumina, Madison, 
USA) according to the manufacturer’s instructions. The 
remaining transcripts were fragmented and cDNA librar-
ies for Illumina sequencing were constructed by Vertis 
Biotechnology AG, Germany (http://www.vertis-biotech.
com/), as described previously for eukaryotic microR-
NAs [53], but omitting the RNA size-fractionation step 
prior to cDNA synthesis. Equal amounts of RNA samples 
were poly(A)-tailed using poly(A) polymerase. Then, the 
5′-triphosphates were removed by applying tobacco acid 
pyrophosphatase (TAP) resulting in 5′-monophosphat. 
Afterwards, a RNA adapter was ligated to the 5′-phos-
phate of the RNA. First-strand cDNA was synthesized 
by an oligo(dT)-adapter primer and the M-MLV reverse 
transcriptase. In a PCR-based amplification step, using a 
high-fidelity DNA polymerase, the cDNA concentration 
was increased to 20–30 ng/µl. A library-specific barcode 
for multiplex sequencing was part of a 3′-sequencing 
TruSeq adapter. The resulting cDNA libraries were 
sequenced using a HiSeq 2500 machine in single-read 
mode running 100 cycles.

RNA extraction and sequencing from a biogas fermenter 
sample
A biogas fermenter sample was taken in March 2015, 
mixed with an equal amount of RNAlater solution and 
immediately frozen on dry ice for transport. In the lab, 
the sample was stored at −70 °C.

Isolation of ribonucleic acids for RNA-Seq was car-
ried out using the PowerMicrobiome™ RNA Isolation 
Kit from Mo Bio Laboratories (Carlsbad, Germany), as 
recommended by the manufacturer. In a next step, ribo-
somal RNA was depleted using the Ribo-Zero™ rRNA 
Removal Kit for Bacteria (Illumina, Madison, USA) 
according to the manufacturer’s instructions. The rRNA-
depleted samples were purified via the RNA Clean & 
Concentrator Columns from Zymo Research (Irvine, 
USA). During this step, an additional in-column DNase 
I treatment was included to ensure complete removal of 
DNA. Subsequently, synthesis of double-stranded cDNA 
was conducted using the Maxima H Minus Double-
Stranded cDNA Synthesis Kit from ThermoScientific 
(Waltham, USA). In the first-strand cDNA synthesis 
reaction, 2 µl of random hexamer primer were used. Final 
purification of the blunt-end double-stranded cDNA was 

carried out using SureClean Plus solution from Bioline 
(Luckenwalde, Germany). The cDNA was sequenced in 
the same way as the total DNA. To achieve the required 
amount of cDNA for library preparation, multiple RNA 
isolations from the same sample were pooled.

Processing and analysis of RNA‑Seq reads
To identify highly transcribed glycoside hydrolases in the 
biogas fermenter and elephant feces samples, RNA-Seq 
reads generated for both samples were checked for read 
quality and sequencing adapters were removed using 
Trimmomatic 0.33 [33]. In the next step, poly(A) tails 
>10 were removed using the trim_tail_left/right func-
tion of PRINSEQ lite 0.20.4 [54]. Subsequently, short 
sequences (≤99 nt) were filtered and rRNA gene-derived 
sequences were removed employing SortMeRNA 2.0 
[55]. All remaining non-rRNA reads were used for map-
ping to the metagenomic contigs of the respective assem-
bly (indicated in Table 4). For this mapping, Bowtie2 [45] 
was used in end-to-end mode (preset: very sensitive) and 
allowing 1 mismatch during seed alignment. After this, 
the htseq-count script from HTSeq 0.6.1 [56] was applied 
in non-stranded mode with default settings (alignment 
quality cutoff <10) to count the reads which map to genes 
predicted in the respective assembly by Prodigal 2.6.1. 
Finally, the genes were filtered for previously identified 
potential glycoside hydrolase encoding genes. The taxo-
nomic origin of 100  GHs (including all CAZy families) 
and 50  GHs (including only cellulolytic CAZy families) 
with the highest numbers of mapped cDNA reads was 
determined via a protein blast and MEGAN5 LCA analy-
sis as described above.

To analyze the expression level of cellulolytic GHs 
genes in the bacterial metagenomic bins created from 
the biogas fermenter metagenome, the initial raw reads 
were again processed using PRINSEQ lite: 10 bases were 
trimmed from the 5′ end, bases with a quality score <5 
were trimmed from the 3′ end, and sequences with mean 
quality <20 or length <70  bp were discarded. Subse-
quently, the remaining RNA-Seq reads were mapped to 
the Ray assembly used for metagenomic binning (indi-
cated in Table  1) via Bowtie2. Next, Bedtools multicov 
[37] was used to calculate coverage values of potential 
CAZy glycoside hydrolases which were identified in the 
metagenomic bins as described in the binning section. 
The coverage values were converted to rpkm values and 
plotted against bin taxonomy using the heatmap.2 func-
tion of the gplots package in R (R Core Team, 2015).

Transmission electron microscopy (TEM)
Slices were prepared using the microtome Reichert-Jung 
Ultracut E. Fixation was performed in 2 % glutaraldehyde 
in 75 mM cacodylate buffer (pH 7.0). Next, the samples 

http://www.vertis-biotech.com/
http://www.vertis-biotech.com/
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were supplied with 2 % agar in 75 mM cacodylate buffer 
(pH 7.0) and further fixed with 1 % OsO4 in 50 mM caco-
dylate buffer (pH 7.0). After washing with 75 mM caco-
dylate buffer (pH 7.0), water was removed with acetone 
and the sample was infiltrated with Spurr resin (Poly-
sciences, Warrington, PA, USA). TEM pictures were 
taken on the LEO 906 E using the camera Gatan 794 and 
the software Digital micrograph (Gatan GmbH, Munich, 
Germany).

DNS Assay for determination of total cellulolytic activities
To determine total cellulolytic activities in the sam-
ple materials, 0.2  g of biogas fermenter material as well 
as various fecal samples of herbivorous animals were 
diluted in 1 ml phosphate buffer (0.1 M, pH 6.6) contain-
ing 2  mM EDTA and 1  mM PMSF. The feces samples 
were obtained from animals living in the Hagenbeck Zoo 
in Hamburg, Germany. Subsequently, the samples were 
sonicated on ice for 15  min and centrifuged for 1  min 
at full speed. The supernatants were transferred to new 
tubes and 100  µl aliquots were used for total protein 
quantification via the Pierce™ BCA Protein Assay Kit as 
recommended by the manufacturer (Thermo Fischer Sci-
entific, Pinneberg, Germany). In the next step, 100 µl of 
the remaining supernatants were used for the 3,5-dini-
trosalicylic acid (DNS) assay. The assay was conducted 
in triplicates as described by Juergensen and colleagues 
[57]. Incubation of the samples with carboxymethycel-
lulose (CMC) was carried out at 37  °C for 90  min. For 
each sample, an additional reaction with buffer instead 
of CMC was conducted and used as a blank. The amount 
of reducing sugar ends was quantified at 546  nm using 
a SmartSpec Plus spectrophotometer (Biorad, Munich, 
Germany). For the calculation of specific enzyme activi-
ties, the obtained values were corrected against the meas-
ured total protein content. Data are mean values of three 
independent tests. One unit is defined as the amount of 
enzyme generating 1 µmol of reduced sugar per minute.

Sequence data deposition
Within the framework of this study, generated raw 
sequence data have been deposited under the NCBI Bio-
Project number PRJNA301928. In addition, an assembly 
of the biogas fermenter metagenome can be accessed and 
downloaded via IMG/ER (https://www.img.jgi.doe.gov) 
using the IMG ID 3300002898. The 104 metagenomic 
bins are provided in the compressed Additional files 1, 2, 
3 and 4.

Results and discussion
Characteristics of the analyzed biogas plant
Biogas plants harbor complex microbial communi-
ties that are essential for the different steps of biogas 

production. However, the overall biogas production rates 
are limited and depend on the initial hydrolysis of the 
plant biomass [2, 8, 58]. To identify possible limitations 
regarding the overall hydrolytic performance of biogas 
plants, we sampled and analyzed a typical one-stage agri-
cultural plant with respect to its taxonomic structure 
and its metagenome content. A detailed overview about 
the process parameters of this plant is provided in the 
“Methods” section, and additional parameters are shown 
in Additional file 5: Table S1. Given the fermentation and 
process conditions, this plant is representative for several 
thousand one-stage plants across Europe. Samples were 
taken at two time points (March and May 2013) for DNA 
extraction and one time point (March 2015) for RNA 
extraction as described in the “Methods” section.

Community structure and diversity of the agricultural 
biogas plant
To analyze the community structure and the main 
actors in lignocellulose degradation, transmission elec-
tron microscopy (TEM), 16S rRNA gene amplicon, and 
metagenome sequencing were conducted. As expected, 
TEM microscopy indicated a high microbial diversity and 
a substantial number of cellulosome-producing bacteria 
in the studied biogas sample (Fig. 1a). Surprisingly, image 
analysis of several large decomposing plant cells implied 
that the cellulosome-producing microorganisms were in 
general closely attached or in proximity to the decompos-
ing cell walls, while other microbes were only observed 
in some distance from the degrading cell walls. This was 
also observed when other samples from the same biogas 
reactor were analyzed using TEM (Additional file 6). In 
fact, the cellulose decomposing bacteria formed a loose 
layer or biofilm that was mostly not penetrated by other 
microorganisms. This is an intriguing and novel obser-
vation, since it implies that the cellulosome-producing 
bacteria have a competitive advantage and that they can 
colonize and degrade the plant material in the absence 
of other bacteria. A similar observation was not made 
when samples from elephant feces [15], a herbivore that 
is known for its richness in cellulolytic enzymes, were 
analyzed. Intrigued by this observation, we assayed total 
cellulolytic activities in the supernatant of biogas fer-
menter content and feces samples obtained from various 
herbivores. In all cases, the biogas sample had the lowest 
cellulolytic activities (Additional file  7). It was approxi-
mately three–five-folds less active than supernatants 
obtained from mara, elephant, cow, and zebra feces sam-
ples. Even though carboxymethylcellulose is a model sub-
strate which cannot reflect the total hydrolytic activity of 
diverse glycoside hydrolases and sample treatment (e.g. 
sonication) might have an effect on the initial activity, 
this finding suggested that there were major differences 

https://www.img.jgi.doe.gov
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within the bacterial communities which would lead to 
the observed different activity profiles.

To get a further insight into the diverse community 
of the studied biogas plant, 16S rRNA gene amplicon 
sequencing was carried out. Clustering of bacterial 16S 
rRNA gene amplicons at a 99 % similarity level resulted 

in 994 OTUs for the March 2013 sample and 1108 OTUs 
for the May 2013 sample (Fig.  1b). Archaeal diversity 
was substantially lower in the samples. Archaeal-derived 
16S rRNA gene amplicons were clustered to 59 (March) 
and 95 (May) OTUs. An additional information regard-
ing diversity and richness (Chao1, Shannon-Index) is 

Fig. 1  a TEM micrograph of a decomposing plant cell and the associated microorganisms in a biogas fermenter. Cellulosome-producing bacteria 
are almost exclusively observed in close association with the plant cell wall, where they appear to suppress growth of other microbes. Most other 
microorganisms are located at the more central part of the decomposing plant cell. Cellulosome-producing bacteria were identified by the large 
dark spots attached to the cells. b Rarefaction curves calculated for two fermenter samples of the studied agricultural biogas plant. The OTUs were 
clustered at 99 % genetic similarity of 16S rRNA genes. The sequences were denoised employing Acacia, and chimeric sequences were removed 
using UCHIME. Singleton OTUs were removed prior to the rarefaction analysis. c Phylogenetic analysis of two biogas fermenter samples based on 
16S rRNA gene amplicons. The bars indicate the relative abundance of bacterial phyla and euryarchaeota genera in two samples taken from the 
same fermenter at different time points (March and May 2013). d Phylogenetic analysis of three assembled metagenomic data sets based on 31 
bacterial marker genes. The bars show the marker gene affiliation to bacterial phyla in the data sets derived from biogas fermenter May sample and 
for reasons of comparison from published data sets of elephant feces and cow rumen samples [15, 23]. For this analysis, the AMPHORA 2 software 
was used
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provided in Additional file 5: Table S2. A direct compari-
son between the samples from our plant indicated that 
691 bacterial and 52 archaeal OTUs could be observed 
in both analyzed samples Additional file 5: Table S3. This 
relatively high number of shared OTUs suggests the pres-
ence of a mostly steady microbial core community in the 
biogas fermenter under the constant process conditions. 
Within this framework, the taxonomic classification of 
the bacterial 16S amplicons indicated that most of the 
obtained sequences (March 56 %, May 50 %) were affili-
ated with the phylum of the Firmicutes (Fig.  1c). Other 
abundant phyla were the Bacteroidetes with a relative 
abundance of 21 % in both samples and the Spirochaetes 
(March 18 %, May 24 %). The archaeal-derived 16S rRNA 
amplicons were all classified into the phylum of Euryar-
chaeota. In both samples, the most abundant archaeal 
genus appeared to be Methanoculleus (March 81  %, 
May 59  %). The next abundant genera were Methano-
masiliicoccus (March 11 %, May 13 %) and Methanosar-
cina (March 6 %, May 23 %). A more detailed taxonomic 
breakdown of the 16S rRNA gene analysis results is given 
in Additional file 8.

Metagenome‑based analysis and binning of the May 2013 
biogas sample
In addition to amplicon sequencing, a large data set of 
metagenomic DNA was produced for the May sample. 
We generated 581 million reads which were assembled to 
236,489 contigs (>1000 bp) with a total of 2 million poten-
tial open reading frames and 1.25 Gb of assembled DNA 
(Table  1). This data set comprises the largest currently 
assembled and published data set for a biogas reactor so 
far and it is, with respect to cellulolytic communities, the 
second largest metagenome currently published. Only the 
data set obtained from a microbiome adherent to switch-
grass, which was incubated in the rumen of a cow for 
72 h, is larger with respect to the assembly [23].

We utilized this comprehensive assembly to further 
investigate the community structure in the fermenter 
and found distinct differences in the phylogenetic make 
up and the overall diversity compared to the amplicon-
based data. For this, we employed the AMPHORA2 soft-
ware [42], which uses 31 conserved bacterial proteins as 
phylogenetic markers. A total of 15,506 marker genes 
were identified in our biogas metagenome data set and 
classified. Thereby, the analysis revealed that 57 % of the 
marker genes were affiliated with the Firmicutes followed 
by Bacteroidetes (11 %), Actinobacteria (7 %), Tenericutes 
(6 %), Proteobacteria (6 %), Spirochaetes (3 %), and other 
phyla (Fig. 1d). Almost 50 % of all identified marker genes 
were assigned to the class Clostridia followed by Bacte-
roidia (9 %), Actinobacteria (7 %), Mollicutes (6 %), and 
other classes.

In general, the phylogenetic structure of our sampled 
biogas plant appeared to be similar to the structures 
described in already published studies of biogas ferment-
ers. These published studies were in part based on 16S 
rRNA amplicon analyses, but also based on metagenome 
data sets [2–4, 25]. In these studies, it was repeatedly 
reported that the Firmicutes were the prevalent phylum 
followed by the Bacteroidetes. By comparing the ratios of 
the Firmicutes versus the Bacteroidetes in already pub-
lished studies of agricultural biogas fermenters and our 
own analysis, we found that the mean ratio of the Firmi-
cutes versus the Bacteroidetes was 5.6–6.0:1 (Table 2 and 
included references) indicating an, on average, almost 
six-fold higher relative abundance of the Firmicutes com-
pared to the Bacteroidetes in the analyzed fermenters.

To further examine the microbial community in the 
biogas fermenter, a metagenomic binning based on com-
position and differential coverage data was performed 
for the May 2013 sample. For this analysis, the Ray Meta 
assembly with the highest N50 value was used (Table 1) 
and binning was conducted. Thereby, 104 high-quality 
bins were observed and assigned to four binning catego-
ries (Table 3). The binning results basically reflected the 
population structure as determined by the marker gene 
analysis. In total, 57 of the high-quality bins were affili-
ated with the Firmicutes and most of these with the class 
Clostridia (51). The second most abundant taxonomic bin 
classification was Bacteroidetes with 21 observed bins of 
which 16 were further attributed to the class Bacteroidia. 
The remaining bins were mainly affiliated with the Fibro-
bacteres (3), the Spirochaetes (4), the Actinobacteria (2), 
the Verrucomicrobia (2), and the Euryarchaeota (3). Nine 
bins were not assigned to a specific bacterial phylum. A 
detailed overview about the taxonomic classification of 
the bins, the estimated bin completeness, the bin con-
tamination, and the size of the bin is provided in Addi-
tional file 5: Table S4. For some of the bins, a taxonomic 
classification with high confidence was possible down to 
the species level. For example, highly complete genome 
reconstructions were possible for Fibrobacter succino-
genes or a closely related species (Bin-IDs pb121 and 
pb122). In addition, the binning of genome drafts of the 
cellulolytic bacteria Clostridium thermocellum (Bin-ID 
96) and Clostridium phytofermentans (Bin-IDs pb35-2, 
pb186-2, and pb35-1) was possible. In the class Bacte-
roidia, comprehensive genome binnings were obtained 
for species closely related to Paludibacter propionicigenes 
(Bin-IDs 145 and 201) and a not further classified organ-
ism of the family Porphyromonadaceae (Bin-ID pb69). 
Finally, a genome bin of the methanogenic archaeon 
Methanosarcina barkeri was reconstructed with only 
minor contamination (Bin-ID pb85). Besides the known 
presence of methanogenic archaea within biogas 
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fermenters, the number of high-quality bins related to 
this taxonomic group was rather small compared to the 
number of bins obtained for bacteria. In general, the bin-
ning of metagenomic contigs into high-quality genome 
bins allows the reconstruction of key metabolic features 
of these organisms or OTUs. This is especially useful for, 
so far, under-represented groups which have not been 
studied in much detail. Thus, the bins generated during 
this study provide the basis for a future in-depth analysis 
of the metabolism and physiology of these organisms.

A direct comparison of the biogas plant microbial 
community with fecal and rumen microbiomes 
of herbivores indicates major differences in the ratio of the 
Firmicutes versus the Bacteroidetes
Based on the phylogenetic analysis of the biogas fer-
menter analyzed in this study and the studies listed in 
Table 2, we asked if the relative ratio of the phylum of the 
Firmicutes versus the Bacteroidetes could be used as an 

indicator for the fitness of a biogas plant and if this would 
be indicative for the diversity of plant biomass degrad-
ing genes. Since most agricultural biogas fermenters are 
inoculated and fed with various animal manures, it is 
likely that the Bacteroidetes are present at high levels ini-
tially, but are then outcompeted. Reasons for this shift in 
the microbial community might be the operation condi-
tions in the biogas reactors or the lack of growth factors 
that are usually present in the natural habitats of the Bac-
teroidetes. Within this framework, it is noteworthy that 
our fermenter was also fed with cow manure and chicken 
manure that both contain high levels of the Bacteroidetes 
[59, 60].

In a next step, we calculated the ratios of the Firmicutes 
versus the Bacteroidetes in published fecal, rumen, and 
gut samples of herbivorous animals which nurture from 
various plant-derived biomasses. The resulting ratios, as 
well as the methods used in the original publication for 
the analysis of the microbial community, are indicated 

Table 2  Ratio of the phyla Firmicutes vs. Bacteroidetes in biogas fermenters and herbivorous animals

The data are based on the data sets published in the indicated references or on data produced in this study

Microbiome/community Firmicutes/Bacteroidetes phyla ratio Reference/data source

16S amplicon-based analysis Metagenome-based analysis

Biogas fermenter 2.4:1 5.2:1 This study

Biogas fermenter – 4.7:1 [25]

Biogas fermenter (dry fermentation) – 4.1:1 [3]

Biogas fermenter (wet fermentation) – 3.9:1 [3]

Biogas fermenter 9.6:1 5.9:1 [4]

Biogas fermenter – 9.6:1 [2]

Mean 6:1 5.6:1

Asian elephant feces 0.8:1 1.6:1 [15]

Switchgrass incubated in cow rumen – 1.5:1 [23]

Rumen of a hay-fed cow 0.8–1.7:1 – [14]

Svalbard reindeer Rumen 0.5:1 0.4:1 [18]

White rhinoceros feces 1.6–2.7:1 – [24]

Rex rabbit feces 0.8–1.3:1 – [16]

Rumen of a pasture-fed sheep 0.3–0.5:1 – [14]

Giraffe rumen 1.6:1 – [17]

Mean 1:1 1.2:1

Table 3  Binning summary of biogas fermenter May 2013 sample

Bin category Quality criteria # of bins in category

Good bins >95 % completeness and <5 % contamination or 20

>95 % completeness and <10 % contamination with >90 % heterogeneity

Nearly complete genome drafts >90 % completeness and <5 % contamination 20

Nearly complete pangenome drafts >90 % completeness and >5 % contamination 37

Incomplete genome drafts 60–90 % completeness and <7 % contamination 27
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in Table  2. Interestingly, when we analyzed the pub-
lished data, we observed a mean ratio of almost 1:1 (Fir-
micutes vs. Bacteroidetes) for seven out of eight analyzed 
natural microbiomes. Only the published microbiome 
of the white rhinoceros revealed a slightly higher ratio 
of 1.6–2.7:1. Altogether, these analyses imply an almost 
equal abundance of Firmicutes and Bacteroidetes in these 
natural systems. This is in contrast to the ratios observed 
for the biogas fermenter in this study and many other 
published examples. In all these studied biogas ferment-
ers, the Firmicutes were usually 4–6 times more promi-
nent than the Bacteroidetes. Thus, it is likely that bacteria 
affiliated with Bacteroidetes do not compete as well in 
agricultural biogas plants compared to their natural habi-
tats and compared to the Firmicutes. It is tempting to 
speculate that a decreased abundance of the Firmicutes 
together with an increased abundance of the Bacteroi-
detes might be an indicator for the fitness of biogas plants 
with respect to cellulolytic activities.

In‑depth analysis of predicted glycoside hydrolase 
and carbohydrate esterase family enzyme abundance 
and origin largely confirms the phylogenetic analyses 
and implies a lower enzyme abundance compared 
to natural microbiomes
Intrigued by the above-made findings, we wanted to 
investigate how the different ratios of the Firmicutes vs. 
the Bacteroidetes might affect the abundance of genes 
encoding GH family enzymes which are involved in the 
breakdown of the plant biomass and especially the lig-
nocellulose. To address this question, we analyzed our 
assembled metagenomic data set obtained from the 
biogas fermenter with respect to the predicted diversity 
of hydrolytic enzymes involved in lignocellulose degra-
dation and with respect to the taxonomic origin of these 
genes and enzymes. For this analysis, we used profile hid-
den Markov models, which were based on entries in the 
carbohydrate-active enzyme database (CAZy). The CAZy 
database encompasses a large set of validated carbohy-
drate-active enzymes and offers a sequence-based family 
classification of enzymes that are involved in the modifi-
cation or breakdown of polysaccharides [48]. Within the 
up to 2 million-predicted potential genes of the analyzed 
biogas fermenter sample, we identified a total of 17,305 
putative genes for glycoside hydrolases from 109 differ-
ent families. This equals 13.8 GHs per Mbp of assembled 
DNA. With respect to the lignocellulose degradation, 
the most predominant GH families observed were GH3, 
GH5, GH9, GH51, GH74 and GH94 family enzymes. The 
total number of potential hits observed in the respec-
tive family was 977 for GH3, 599 hits for GH5, 216 for 
GH9, 265 for GH51, 373 for GH 74 and 269 for GH94. 
These GH families encompass a variety of hydrolytic 

enzymes, e.g. cellulases, endo- and exoglucanases, arab-
inofuranosidases, endoxylanases, cellobiohydrolases, and 
xyloglucanases.

In a next step, we assigned the taxonomic origin to the 
identified potential cellulolytic GH encoding genes via 
a protein blast search against the NCBI non-redundant 
database in combination with the MEGANs LCA algo-
rithm. Using this approach, we were able to elucidate the 
phyla which contributed most to the hydrolytic metagen-
omic potential in the fermenter. We found that most of 
the predicted enzymes belonging to the cellulolytic GH 
families 1, 3, 5, 8, 9, 30, 45, 51, 74 and 94 showed the 
highest coverage for affiliates of the Firmicutes in the 
biogas fermenter (Fig.  2a). Notably, the number of pre-
dicted enzymes affiliated with the phylum of the Bacte-
roidetes was much lower in the analyzed cellulolytic GH 
families. A small fraction of predicted enzymes origi-
nated from the phyla Actinobacteria, Spirochaetes, and 
Tenericutes.

A similar analysis was done for the CE family genes and 
enzymes. CE family enzymes are mainly carbohydrate-
active esterases and were recently introduced into the 
CAZy database. Within our data set, predicted genes for 
all 16 known CE families were covered and a total of 7655 
genes possibly encoding for CE family enzymes were 
identified. This equals 6100 CEs per Gb of assembled 
DNA. The most predominant families were 1, 4, and 10. 
Thereby, we observed 1826 hits for family CE1, 1697 hits 
for family CE4, and 1198 hits for family CE10. Altogether 
these findings implied a high GH and CE enzyme diver-
sity within the data set and suggested that the majority 
of the genes coding for these enzymes were derived from 
the Firmicutes.

To relate the above-made findings to other highly cel-
lulolytic microbial communities, we compared these 
values to published and very comprehensive studies of 
two natural systems. The first data set was derived from 
a microbiome adherent to switchgrass, which was incu-
bated in the rumen of a cow for 72  h [23]. The second 
data set was obtained from the feces of an adult Asian 
zoo elephant and published in 2014 by our group [15]. 
Both of these assembled metagenomic data sets were of 
a similar size as the data set generated in this study from 
an agricultural biogas plant. These data sets are, to our 
knowledge, the largest data sets of cellulolytic communi-
ties publicly available so far. In the original studies, both 
samples were described as being highly diverse and rich 
in hydrolytic enzymes. Within this framework, it is note-
worthy that cows and elephants rely on different strate-
gies for the digestion of their food. Elephants are hindgut 
fermenters and degrade their diet in the caecum, whereas 
cows are foregut fermenters and digest their food in the 
rumen [61]. While cows mainly fed on grass, elephants 
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digest a wider spectrum of plant-derived biomass, and as 
a consequence, their microbiomes are, in part, different.

The two published data sets were downloaded from 
IMG/MER (https://www.img.jgi.doe.gov/er/) and used 
for the comparative analyses with respect to the diver-
sity and abundance of GH and CE enzymes (Table  4). 
We identified 22.5 GHs/Mbp of assembled DNA in the 
Elephant feces data set and 14.9 in the Cow data set 
compared to 13.8 in the biogas data set. For this com-
parison, the quantity of potential GH/CE encoding 
genes was analyzed independently of contig coverage. 
The abundance and distribution of the predicted genes 

coding for GH family enzymes in 1  Gb of assembled 
DNA are shown in Fig. 3. In a next step, the genes possi-
bly coding for GH family enzymes involved in the break-
down of cellulose were examined in detail. For this, we 
included the 9 most abundant cellulolytic GH families 
which were observed in the biogas data set and com-
pared their abundance and taxonomic origin in all three 
data sets (Fig.  2a). Interestingly, out of the 9 analyzed 
cellulolytic GH families, the biogas data set revealed the 
lowest number of potential enzymes in 7  GH families. 
Our analysis suggests that the lower abundance of GHs 
in these families can be attributed to a partial lack of 

Fig. 2  Abundance and taxonomic origin of hydrolytic enzymes in the biogas, elephant, and cow rumen data sets. a Dominant cellulolytic glycoside 
hydrolase families and b carbohydrate esterases families in metagenomic data sets. Sequences which could not be assigned to a distinct bacterial 
phylum using MEGAN’s LCA algorithm are shown in grey. The number of potential enzymes was normalized to 1 Gb of assembled DNA

https://www.img.jgi.doe.gov/er/
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enzymes derived from bacteria affiliated with Fibrobac-
teres and, especially, Bacteroidetes. Since both of these 
phyla comprise important polysaccharide-degrading 
bacteria in the gut and rumen of animals [12], an under-
representation of genes coding for GHs derived from 
these groups implies a potentially important limitation 
in the biogas fermenter with regard to the hydrolysis of 
biomass.

With respect to the carbohydrate esterase family 
enzymes, a similar observation was made. Of the 16 fam-
ilies analyzed, only the CE families 4 and 14 had equal or 
more hits in the biogas data set compared to the elephant 
feces and cow rumen data sets (Fig. 2b). Distinct differ-
ences in the abundance of potential CEs were observed in 
the families CE1, CE2, CE3 and CE10. Enzymes assigned 
to these families share diverse enzymatic activities and 
substrate specificities, including acetyl xylan esterases 
and feruloyl esterases. Both of these groups of enzymes 
have been shown to be important accessory enzymes 
involved in the degradation of lignocellulosic biomass 
[62, 63]. A decreased overall diversity of CEs in the biogas 
fermenter might point to a disadvantage in the ability to 
efficiently degrade biomass compared to the two natural 
systems.

In addition to the identification of potential GHs and 
CEs encoding genes, we wanted to assess the presence 
of cellulosome encoding gene clusters in the differ-
ent metagenome data sets. For this analysis, we used 
amino acid sequences of known cellulosomal scaffold-
ing proteins and an iterative protein sequence similar-
ity search with a cut-off score of 700. We identified a 
total of 3 hits in the biogas fermenter metagenome 
data set, 2 hits in the cow rumen data set, and no hits 
in the elephant feces data set (Additional file  5: Table 
S6). This analysis demonstrates a reduced diversity 
of cellulosome-producing bacteria in the cow rumen 
data set and, possibly, a complete lack of cellulosomes 
in the elephant feces data set. The potential celluloso-
mal scaffolding encoding genes, which were identified 
in the biogas data set, were allocated to the bacterial 
genome bins 96, pb35-1, and pb235-1. While the bin 96 
was assigned to the genus Clostridium, the bins pb35-1 
and pb235-1 were both assigned to the family Lachno-
spiraceae. Interestingly, a nucleotide blast search of the 
putative cellulosomal scaffolding genes found in the bin 
pb35-1 showed a 99 % identity to the recently described 
thermophilic cellulose-degrading bacterium Herbinix 
hemicellulosilytica which was isolated from a thermo-
philic biogas reactor [64, 65]. This finding suggests that 
this organism is also present in the community of our 
sampled fermenter and indicates that this species pro-
duces cellulosomes.

Fig. 3  Heatmap indicating the abundance and distribution of poten-
tial GH family enzymes in the assembled metagenomic data sets. 
Rows are color coded according to Z-score. A Z-score change of +1 
is equal to one standard deviation above the row mean. GH families 
involved in cellulose degradation are labeled with an asterisk. GH 
families not listed were not observed in the data sets. The amount of 
potential enzymes was normalized to 1 Gb of assembled DNA
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RNA‑Seq identifies metabolically highly active bacterial 
and archaeal groups as well as highly transcribed genes 
in the biogas fermenter
In the light of the above-made findings, we asked which 
families of GH enzymes were highly transcribed in the 
biogas fermenter at the time of sampling. In addition, we 
wanted to know, whether the highly transcribed genes 
were affiliated mainly with the Bacteroidetes, the Firmi-
cutes, or other phyla, and relate our findings to a natu-
ral cellulolytic system. For this, we conducted RNA-Seq 
of a biogas fermenter sample taken from the same biogas 
plant at a later time point and an elephant feces sample. 
Because the initial elephant feces data set was published 
by our group, we had access to samples from the same 
animal, as described in the original publication by Ilm-
berger et al. [15]. Due to difficulties obtaining a compa-
rable sample as analyzed by Hess and colleagues [23], we 
did not include the cow rumen in the RNA-Seq-based 
analysis. RNA extraction, sample preparation, sequenc-
ing, and data processing are described in “Methods” sec-
tion. An overview about the processing steps and the 
number of cDNA sequence reads obtained for both sam-
ples is provided in Table 5.

In a first step, we wanted to get a general idea of the 
functional and taxonomic affiliation of highly transcribed 
genes in the sampled biogas fermenter. To do so, we 
examined the 100 ORFs with the highest levels of abso-
lute transcripts via a protein blast search against the non-
redundant NCBI protein database. It is important to state 
that this does not necessarily mean that these ORFs, seen 
individually, are the highest expressed ones. For 94 ORFs, 
homologs in the non-redundant protein data base were 
observed, while for the remaining 6 predicted ORFs no 
homologies were observed at all (Additional file 5: Table 
S5). The largest fraction of 31 ORFs showed the highest 

similarity to hypothetical proteins. Thus, this result might 
suggest that many gene functions of the microbial com-
munity in biogas fermenters are not well characterized. 
Of the ORFs with an assigned function, 20 ORFs were 
affiliated with bacterial ABC transporter substrate-bind-
ing proteins, and 13 ORFs scored the best hit for archaeal 
enzymes involved in methanogenesis. A large fraction of 
these methanogenesis-related ORFs encoded for differ-
ent subunits of the Methyl-coenzyme M reductase.

Furthermore, 85 ORFs could be taxonomically clas-
sified using MEGANs LCA method. Of these, 67 ORFs 
were of bacterial origin and 17 of archaeal. The bacte-
rial ORFs mainly originated from the Firmicutes (50) 
and within this phylum from the genus Clostridia (38). 
Notably, a large fraction of 23 ORFs was assigned to 
uncultured bacteria of the family Peptococcaceae sug-
gesting a very high metabolic activity of these physi-
ologically diverse and partly acetogenic bacteria [66] 
in our sampled fermenter. In addition, 6 ORFs were 
assigned to the order Halanaerobiales. The majority of 
species in the order Halanaerobiales is known for sugar 
fermentation or homoacetogenesis [67]. These results 
might indicate a high relevance of these two bacterial 
groups for acidogenesis and acetogenesis in this biogas 
fermenter and perhaps for agricultural biogas reactors 
in general. Most of the archaeal ORFs were assigned to 
the class Methanomicrobia (9) and within this class to 
the genus Methanoculleus (5). Two highly transcribed 
ORFs originated from the hydrogenotrophic metha-
nogen Methanoculleus bourgensis. This finding is in 
accordance with recent research suggesting a predomi-
nant methanogenesis via the hydrogenotrophic pathway 
in agricultural biogas plants [68, 69]. Finally, two highly 
transcribed ORFs were attributed to yet uncultured 
archaea.

Table 5  RNA-Seq processing steps and  number of  cDNA sequence reads obtained for  elephant feces and  biogas fer-
menter samples

Processing step Elephant Biogas

Pre-processing No. of input reads 141,700,987 282,930,624

After removal of polyA tails and short sequences <99 103,591,215 282,711,062

SortMeRNA After rRNA removal 77,904,289 274,661,662

Bowtie2 Input reads 77,904,289 274,661,662

Reads aligned 0 times 62,293,074 (79.96 %) 49,200,963 (17.91 %)

Reads aligned exactly 1 time 12,328,533 (15.85 %) 172,293,650 (62.73 %)

Reads aligned >1 times 3,282,682 (4.21 %) 53,167,049 (19.36 %)

Overall alignment rate 20.04 % 82.09 %

HTSeq-count Counted 8,140,194 (52.14 %) 159,743,444 (70.85 %)

No feature 3,784,252 (24.24 %) 37,124,802 (16.47 %)

Ambiguous 382,196 (2.45 %) 6,133,988 (2.72 %)

Too low alignment quality (MAPQ <10) 3,304,573 (21.17 %) 22,458,465 (9.96 %)
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RNA‑Seq data imply that highly transcribed GH encoding 
genes in the biogas fermenter mainly originate from the 
Firmicutes, while bacteroidetal GH encoding genes are 
most transcribed in the elephant feces
In a next step, we wanted to examine differences in the 
transcription of GHs enzymes in the biogas and ele-
phant samples in detail. For this purpose, we restricted 
our RNA-Seq data analysis to ORFs, which were previ-
ously identified to potentially encode for GHs. Thereby, 
we examined the taxonomic origin and CAZy family dis-
tribution of 100  GHs (including all CAZy families) and 
50 GHs (including only cellulolytic CAZy families) with 
the highest numbers of mapped cDNA reads. We found 
that the majority of GHs in both of these groups was affil-
iated with the Firmicutes in the biogas fermenter sample 
(Fig. 4a). The ratios of GHs derived from the Firmicutes 
versus the Bacteroidetes were 2.3:1, including all families 
and 4.3:1, including only the cellulolytic families. These 
results further supported the observation that the Fir-
micutes are the predominant group responsible for the 
hydrolysis of biomass in the biogas fermenter. In contrast, 
the same analysis conducted for the elephant feces indi-
cated that most of the highly transcribed GHs originated 
from the Bacteroidetes. Here, the ratios of GHs derived 
from the Firmicutes versus the Bacteroidetes were 0.68:1, 
including all families and 1:1, including only the cellulo-
lytic families. Compared to the biogas fermenter, a larger 
fraction of GHs was also affiliated with the Fibrobacteres.

Furthermore, when examining the CAZy family distri-
bution of the 50 cellulolytic GHs with the highest levels 
of absolute transcript, we observed that in the elephant 
feces, most of the putative enzymes were assigned to the 
family GH51 followed by GH5 and GH9 (Fig. 4b). In the 

biogas fermenter, the GH9 family was most frequently 
observed followed by GH5 and GH51. While these three 
GH families are all involved in the hydrolysis of lignocel-
lulose, they differ in their substrate specificities. Inter-
estingly, the GH 51 family contains many hemicellulases 
while the GH9 family mainly includes cellulose-specific 
enzymes. Altogether these results supported the notion 
that there are distinct differences in the cellulolytic bac-
teria and enzymes involved in the degradation of ligno-
cellulosic biomass between the biogas fermenter and the 
elephant feces sample. In the biogas fermenter, highly 
transcribed cellulolytic GHs were four times more often 
affiliated with the Firmicutes compared to the Bacteroi-
detes (ratio 4.3:1), while an almost equal distribution of 
these enzymes was observed in the elephant feces sample 
(ratio 1:1).

RNA‑Seq identifies transcription of cellulolytic GH family 
enzymes in the bacterial bins generated from the biogas 
fermenter metagenome
To further investigate the transcription of cellulolytic 
GH families in individual organisms in the biogas fer-
menter, we utilized the binned bacterial contigs which 
were generated from the biogas fermenter metagenome. 
For this, RNA-Seq data were mapped onto the binned 
bacterial contigs (Fig.  5a). Although the binned DNA 
represented only a part of the complete metagenome, our 
analysis shows that in individual bacteroidetal genome 
bins, multiple cellulase-encoding genes were strongly 
transcribed (e.g. Bin-IDs 36, 138 and 142). An in-depth 
analysis of these three bins resulted in the identification 
of multiple PULs, including three putatively cellulolytic 
PULs (Fig.  5b). In these PULs, cellulase-encoding genes 

Fig. 4  a Taxonomic origin and b CAZy family distribution of 100 GHs and 50 cellulolytic GHs with highest numbers of mapped cDNA reads 
obtained from RNA-Seq of a biogas fermenter sample in relation to an elephant feces sample. Cellulolytic GHs include the families: GH1, GH3, GH5, 
GH6, GH8, GH9, GH12, GH14, GH30, GH44, GH45, GH48, GH51, GH74 and GH94. For this analysis, Megan LCA parameters were adjusted to “top 
percent 40” and “LCA percent 50” for assignment of phyla
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were identified next to or in close proximity to an SusC 
and SusD gene pair. Interestingly, a two-component sys-
tem histidine kinase gene was also found in all putatively 
cellulolytic PULs. The presence of this regulatory system 
might suggest a differential expression of PUL associ-
ated genes and enzymes in response to the respective 
“target” polymer. An induction of PUL gene transcrip-
tion in response to specific plant polysaccharides was 
already shown for B. ovatus and B. thetaiotaomicron [70]. 
The identification of high transcription levels of cellu-
lase-encoding genes in the bacteroidetal genome bin 36, 
together with the existence of potential cellulolytic PULs 
in the same bin, might provide an explanation how the 
hydrolysis of biomass is carried out by cellulolytic bac-
teroidetal species. In our opinion, this finding further 
supports the notion that the importance and potential of 
bacteroidetal organisms for the degradation of biomass 
in biogas fermenters were most likely under-estimated in 
the past.

This analysis also demonstrates and confirms the pre-
dominant expression of cellulases by various Firmicutes. 
Not surprisingly, numerous organisms belonging to 
the class Clostridia showed transcription of cellulolytic 
enzymes. Particularly, high levels of transcription of cel-
lulolytic enzymes were observed for the clostridial bins 
96 and pb215. The genome bin 96 was taxonomically 
classified as Clostridium thermocellum and in agree-
ment with this classification, the cellulosomal-scaffolding 
protein A of C. thermocellum was identified in this bin 
(Additional file 5 : Table S6). The bin pb215 was classified 
as a not further specified Ruminiclostridium.

Conclusion
In this paper, we provide evidence that the analyzed 
biogas fermenter contains a relatively lower abundance of 
glycoside hydrolases and carbohydrate esterases involved 
in the breakdown of lignocellulosic biomass as compared 
to two natural plant biomass degrading systems. This 
difference can be attributed to a partial lack of enzymes 
derived from bacteria affiliated with the Fibrobacteres 
and, especially, the Bacteroidetes. The partial deficiency 
of these enzymes implies a potentially important limi-
tation in the biogas fermenter with regard to the initial 
hydrolysis of biomass. In addition, we were able to show 
that the mean ratio of the phyla Firmicutes vs Bacteroi-
detes is close to 1:1 in various fecal or gut microbiomes 
of herbivorous animals, while the Bacteroidetes were usu-
ally 5–6 times less prominent in the mainly agricultural 
biogas fermenters listed in Table 2.

In accordance with this observation, RNA-Seq data 
showed that highly transcribed cellulolytic GHs in the 
biogas fermenter were four times more often affiliated 
with the Firmicutes compared to the Bacteroidetes, while 

Fig. 5  a Heatmap reflecting the expression of cellulolytic GH families 
in the bacterial bins generated from the biogas fermenter metage-
nome. Expression strength is shown as square root of the rpkm 
value. Bin-IDs for selected bins affiliated with the Bacteroidetes and 
the Firmicutes are indicated. All other bin-IDs are given in Additional 
file 9 with a continuous labeling. b Physical map of three putative 
cellulolytic PULs. The PULs were identified on three contigs assigned 
to the bacteroidetal bin 36. TBDR = TonB-dependent receptor. An 
asterisk indicates GH families with cellulase (GH5, GH9) or cellobiase 
(GH94) activity
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an equal distribution of these enzymes was observed in 
an elephant feces sample. Finally, we hypothesize that by 
finding ways to alter the ratio of the Firmicutes vs. the 
Bacteroidetes in favor of the Bacteroidetes, an increase in 
the overall hydrolytic performance of biogas plants might 
be achieved. This can potentially be realized by adding 
bacteriodetal isolates at high levels. However, it is likely 
that the added bacteroidetal organisms are quickly out-
competed again due to their better adaptation to natural 
habitats. To achieve a lasting increase in the abundance 
of the Bacteroidetes in biogas fermenters, the process 
conditions would have to be altered in a way that favors 
growth of this bacterial phylum. Consequently, further 
research is required to identify these conditions and fac-
tors, particularly as the microbiomes in natural systems 
are actively influenced and shaped by the host.
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