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Abstract 

Background:  Corynebacterium glutamicum is an important platform organism for industrial biotechnology to pro-
duce amino acids, organic acids, bioplastic monomers, and biofuels. The metabolic flexibility, broad substrate spec-
trum, and fermentative robustness of C. glutamicum make this organism an ideal cell factory to manufacture desired 
products. With increases in gene function, transport system, and metabolic profile information under certain condi-
tions, developing a comprehensive genome-scale metabolic model (GEM) of C. glutamicum ATCC13032 is desired to 
improve prediction accuracy, elucidate cellular metabolism, and guide metabolic engineering.

Results:  Here, we constructed a new GEM for ATCC13032, iCW773, consisting of 773 genes, 950 metabolites, and 
1207 reactions. Compared to the previous model, iCW773 supplemented 496 gene–protein-reaction associations, 
refined five lumped reactions, balanced the mass and charge, and constrained the directionality of reactions. The 
simulated growth rates of C. glutamicum cultivated on seven different carbon sources using iCW773 were consistent 
with experimental values. Pearson’s correlation coefficient between the iCW773-simulated and experimental fluxes 
was 0.99, suggesting that iCW773 provided an accurate intracellular flux distribution of the wild-type strain growing 
on glucose. Furthermore, genetic interventions for overproducing l-lysine, 1,2-propanediol and isobutanol simulated 
using OptForceMUST were in accordance with reported experimental results, indicating the practicability of iCW773 
for the design of metabolic networks to overproduce desired products. In vivo genetic modifications of iCW773-
predicted targets resulted in the de novo generation of an l-proline-overproducing strain. In fed-batch culture, the 
engineered C. glutamicum strain produced 66.43 g/L l-proline in 60 h with a yield of 0.26 g/g (l-proline/glucose) and 
a productivity of 1.11 g/L/h. To our knowledge, this is the highest titer and productivity reported for l-proline produc-
tion using glucose as the carbon resource in a minimal medium.

Conclusions:  Our developed iCW773 serves as a high-quality platform for model-guided strain design to produce 
industrial bioproducts of interest. This new GEM will be a successful multidisciplinary tool and will make valuable 
contributions to metabolic engineering in academia and industry.
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experimentation, Metabolic engineering
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Background
Corynebacterium glutamicum, a Gram-positive soil bac-
terium, is an important platform organism for industrial 
biotechnology and environmental remediation [1, 2]. 
This microorganism is generally recognized as safe and is 
used in the fermentative production of l-glutamate and 
l-lysine on a million-ton scale and l-threonine, l-leucine 
and l-valine on a thousand-ton scale in the food, feed 
and pharmaceutical industries [1, 3]. Due to the meta-
bolic flexibility, broad substrate spectrum, and fermenta-
tive robustness of C. glutamicum cells, this bacterium has 
attracted attention as a potential cell factory to manufac-
ture organic acids, bioplastic monomers (e.g., putrescine 
and cadaverine), and biofuels including ethanol, isobu-
tanol, 1,2-propanediol, and 1-propanol [1, 4, 5]. Based on 
the knowledge of biochemical pathways and microbial 
fermentation processes, new technologies such as systems 
metabolic engineering and high-throughput analyses at 
the genome, transcriptome, proteome, and fluxome levels 
have been applied to strain development to improve the 
yield and productivity of desired products [6–10]. In silico 
genome-wide predictive simulation of metabolic profiles 
is expected to enable the design of artificial metabolic net-
works for desired product synthesis [11].

A genome-scale metabolic model (GEM) is con-
structed based on experimental data and information 
on gene annotations and functions, metabolites, reac-
tions, enzymes, and their interactions [11, 12]. GEM 
has become an essential tool for understanding cellular 
metabolism, characterizing cell phenotypes, designing 
mutant strains with desired properties, and assessing the 
effects of genetic intervention and environmental pertur-
bation on cellular metabolism [13]. The quality of a GEM 
determines the accuracy of outcomes for describing 
the genotype–phenotype relationship of a given strain 
[13, 14]. The first GEM of Escherichia coli (iJE660) con-
sisted of 660 genes, 627 reactions, and 438 metabolites. 
iJE660 was constantly updated to iJO1366 by increasing 
the numbers of new genes and reactions, expanding the 
gene-protein-reaction associations (GPRs), balancing the 
reactions and compartmentalizing metabolites, among 
other updates [15–18]. The updated GEM accurately 
characterized E. coli growth metabolic profiles and was 
used to perform computational and quantitative analyses 
to resolve problems [14]. When coupled with metabolic 
flux constraints and a cellular objective, GEM analy-
sis using computational algorithms [e.g., flux balance 
analysis (FBA), OptKnock, or OptForce] can predict the 
modification of targets in a metabolic network and suc-
cessfully improve the production of succinic acid, etha-
nol, and malonyl-CoA in E. coli [19–21].

The initial GEM of C. glutamicum ATCC13032 
(ModelCg 1) consisted of 247 genes, 446 reactions, and 

411 metabolites and was updated to ModelCg 2 (277 
genes, 502 reactions, and 423 metabolites) by revising 
inadequate reaction loops [22, 23]. Although these two 
models are useful, they have several limitations due to 
previously inadequate information. Annotated genes 
known to participate in different metabolic pathways, 
such as pyruvate kinase isoenzyme, glycerol-3-phos-
phatase, and (S,S)-butanediol dehydrogenase, were not 
included in ModelCg 1 or in ModelCg 2 [24–26]. The defi-
ciency of corresponding metabolic pathways in the two 
models prevented the prediction of cell growth on cer-
tain carbon sources (e.g., acetate, lactate, and xylose). The 
imbalance of the mass and charge in a few reactions (e.g., 
synthesis of RNA, protein, and biomass) and the direc-
tionality of certain reactions without thermodynamic 
constraints had a negative effect on genome-wide pre-
diction using the two models. Moreover, the two models 
have incomplete l-glutamate metabolic systems, which 
prevented their application in studies of the metabolic 
state of l-glutamate production in the stationary phase 
[22, 27]. In 2016, Mei et  al. constructed iJM658 based 
on the genome information of C. glutamicum S9114, 
which was generated by mutagenesis and is widely used 
for industrial l-glutamate production [27]. iJM658 con-
tains l-glutamate secretion and uptake systems, which 
could be more suitable for studying l-glutamate pro-
duction [27]. iJM658 is not applicable for the predic-
tion of metabolic profile of C. glutamicum ATCC13032 
due to the presence of numerous differences in the 
genome sequences between C. glutamicum S9114 and 
ATCC13032. Therefore, it is necessary to expand the 
scope of C. glutamicum ATCC13032’ GEM to metabolic 
engineering for the desired products.

In this study, we present an updated model of the C. 
glutamicum ATCC13032 metabolic network reconstruc-
tion. This new model, named iCW773, accurately pre-
dicted the growth ability and flux distributions of cells 
cultivated under different growth conditions. iCW773 
simulations of genetic interventions for the overproduc-
tion of l-lysine, 1,2-propanediol, and isobutanol were 
highly consistent with experimental data. Along with 
wet-lab practices, genetic modifications were performed 
to generate a de novo l-proline-overproducing strain 
that exhibited the highest reported titer and productivity 
using a minimal medium in fed-batch fermentation.

Results and discussion
A new genome‑scale metabolic model of C. glutamicum 
ATCC13032
We constructed a new GEM for ATCC13032, iCW773, 
which consisted of chemical reactions and interconverted 
metabolites. This network reconstruction contained 773 
genes, 951 metabolites, and 1207 reactions, representing 



Page 3 of 16Zhang et al. Biotechnol Biofuels  (2017) 10:169 

considerable increases in the numbers of genes, reactions 
and metabolites by 2.79-, 2.41-, and 2.25-fold, respectively, 
over ModelCg 2 (Additional file 1: Table S1). In the internal 
reactions of iCW773, 709 ORFs (89.18%) were extracted 
from the KEGG and UniProt databases [28]. The total ORF 
coverage was 25.75% in iCW773, which was 16.52% higher 
than that in ModelCg 2 (Additional file  1: Table S1). Five 
lumped reactions for fatty acids biosynthesis in ModelCg 
2 were refined in iCW773 by replacing each lumped reac-
tion with several sequential reactions in iCW773 (Addi-
tional file 2). Additionally, the charge and mass of reactions 
in iCW773 were balanced, and the mass of reactions 
related to biomass was tested to be 1.00 g/g dry cell weight 
(DCW) (Additional file 3). The directionality of reactions 
was constrained by the Gibbs free energy ΔrG′, which was 
calculated using eQuilibrator2.0 [29]. A complete list of all 
the reactions and metabolites for iCW773 is provided in 
Additional file  3, and the central carbon metabolic path-
way is presented in Additional file 4: Figure S1.

Prediction of growth rates under different culture 
conditions
To evaluate the quality of iCW773, the growth rates of C. 
glutamicum ATCC13032 cultivated on different carbon 
sources were predicted through FBA simulations using 
biomass maximization as the objective function. First, we 
calculated the growth rates on glucose using GEMs by 
setting the glucose and oxygen consumption rates as the 
experimental values [22, 30–32]. As shown in Fig. 1a, the 
Pearson’s correlation coefficient (PCC) between the experi-
mental and iCW773-simulated data was consistent with 
that between the experimental and ModelCg 2-simulated 
data. When fructose, fructose mixed with glucose, sucrose, 
acetate, and lactate were set as the carbon sources, the 
cell growth rates on acetate or lactate could be calculated 
only by iCW773, rather than ModelCg 2 (Fig. 1b) [33–37]. 
It has been reported that C. glutamicum was able to grow 
on non-native glycerol or xylose as the sole carbon source 
after expressing heterologous-related enzymes [38–40]. 

Fig. 1  Comparison of growth rates between experimental data and in silico simulation results at various glucose and oxygen supply levels (a) and 
different carbon sources (b) using iCW773 (left) and ModelCg 2 (right). PCC is the Pearson’s correlation coefficient between the predicted product 
yield values and experimental data. The line corresponding to x = y is also shown. a The glucose uptake rate is shown in regular font in parentheses, 
and the oxygen uptake rate is shown in italics in parentheses. b The uptake rate of the corresponding carbon source is shown in parentheses
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When the three reported reactions catalyzed by glycerol 
kinase, glycerol 3-phosphate dehydrogenase, and aquaglyc-
eroporin from E.  coli were added, both GEMs could cal-
culate the biomass from glycerol [38, 39]. In contrast, only 
iCW773 could simulate the biomass accumulation from 
xylose (Fig. 1b) when two reported reactions catalyzed by 
xylose isomerase and xylulokinase from E. coli were added 
[40]. These results provided evidence that supplemental 
reactions in iCW773 coupled the metabolism of the corre-
sponding substrates (e.g., acetate, lactate, and xylose) with 
the central carbon metabolism (Additional file 5), resulting 
in the realization of growth simulations on these substrates.

Metabolic profile prediction using iCW773
Next, we compared model-predicted metabolic flux 
distributions to 13C-tracer metabolic flux data from 
ATCC13032 cultivated in minimal medium using glucose 

as the sole carbon source [8, 31, 41]. The biomass produc-
tion was used as the objective function, and all flux data 
were normalized to the glucose uptake rate (100%). Nota-
bly, the PCC between the experimental and iCW773-
simulated fluxes was 0.99, suggesting that iCW773 
provided an accurate intracellular flux distribution of the 
WT strain growing on glucose (Fig. 2a).

It has been reported that the inactivation of pgi-
encoding glucose-6-phosphate isomerase can lead to 
a significant metabolic flux disturbance, blocking the 
EMP pathway and redirecting the carbon flux from 
glucose-6-phosphate toward the PPP pathway in C. glu-
tamicum [31]. To analyze the metabolic disturbance 
by gene knockout, the pgi gene was deleted in iCW773 
and ModelCg 2. When FBA was used to calculate the 
intracellular metabolic flux, the iCW773-predicted flux 
toward the PPP pathway increased from 38.49 to 98.59%, 

Fig. 2  Comparison of the metabolic flux profiles of the central metabolism between the 13C-tracer experimental WT (a) and WTΔpgi (b) data for the 
exponential growth phase and in silico simulation results using iCW773 (left) and ModelCg 2 (right). Fluxes were normalized to the glucose uptake 
rates, which were set to 100. PCC is the Pearson’s correlation coefficient between the predicted product yield values and experimental data. The 
line corresponding to x = y is also shown in the inserted figure in the top right corner. EMP: Embden–Meyerhof pathway (glycolytic pathway); PPP: 
pentose phosphate pathway; TCA: tricarboxylic acid cycle. a The experimental data were derived from three studies, and the error bars represent the 
standard deviations [8, 31, 41]
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which was consistent with the experimental values (from 
44.10 to 97.80%) (Fig. 2b) [31]. Moreover, the simulated 
amount of NADPH generated from the PPP pathway in 
WT∆pgi was 1.97 mol/mol glucose, which was 2.30-fold 
higher than that generated from the PPP pathway in WT 
(0.77 mol/mol glucose). Due to the requirement for a cer-
tain amount of NADPH to generate biomass in the sim-
ulation (e.g., 4 mol NADPH per mol l-lysine and 2 mol 
NADPH per mol l-valine), the NADPH generated from 
isocitrate dehydrogenase in the TCA cycle decreased 
from 0.41  mol/mol glucose to 0.22  mol/mol glucose 
to maintain a stoichiometric balance [42, 43]. This dif-
ference in NADPH generation resulted in a smaller 
deviation from the iCW773-simulated TCA flux to the 
experimental value, as shown in Fig.  2b (left). Notably, 
the flux of pyruvate carboxylase (PYRC) in iCW773 was 
efficiently generated, while no PYRC flux from pyru-
vate to oxaloacetate was calculated in ModelCg 2. These 
results illustrate the suitability of iCW773 for predicting 
intracellular metabolic flux distribution.

Validation of iCW773 simulation for amino acid 
overproduction
To investigate whether iCW773 is an efficient tool to 
design strategies for the metabolic engineering of C. glu-
tamicum, the ranges of flux variability in the network 
for the WT and l-lysine overproducing strains were 
calculated using OptForceMUST (Additional file  6). As 
shown in Fig.  3, the gap between the flux ranges of the 
WT and overproducing network quantified the degree 
of required reaction flux modification. In the simulations 
of iCW773, the upregulation of aspartokinase (encoded 
by lysC), dihydrodipicolinate synthase (encoded by 
dapA), dihydrodipicolinate reductase (encoded by dapB), 
diaminopimelate dehydrogenase (encoded by ddh), and 
diaminopimelate decarboxylase (encoded by lysA) in the 
l-lysine synthesis pathway were consistent with previous 
reports [8, 44, 45]. Downregulation of homoserine dehy-
drogenase (encoded by hom) decreased the flux toward 
the competitive pathway [8, 44, 46]. Moreover, deletion 
of phosphoenolpyruvate carboxykinase (encoded by pck) 
and upregulation of pyruvate carboxylase (encoded by 
pyc) directed the flux toward oxaloacetate formation at 
the pyruvate node for l-lysine synthesis [8, 47]. Down-
regulation of aconitase (encoded by acn) and isocitrate 
dehydrogenase (encoded by icd) further minimized car-
bon loss from pyruvate [48]. In addition, upregulation 
of the entire transketolase operon and fructose-1,6-bi-
sphosphatase (encoded by fbp) enhances the NADPH 
supply via PPP to increase l-lysine production [8, 49]. 
In contrast, ModelCg 2 failed to predict the deletion of 
pck, the downregulation of hom and the upregulation 
of lysC, ddh, dapB, and fbp. Therefore, the predictions 

by iCW773 were highly consistent with experimental 
results. For l-valine and l-serine overproduction, the 
modification targets predicted by iCW773 were identi-
cal to the reported experimental results (Additional file 1: 
Table S2).

Validation of iCW773 simulation for non‑native 
1,2‑propanediol and isobutanol synthesis
Corynebacterium glutamicum has previously been engi-
neered for non-native 1,2-propanediol and isobutanol 
production [50, 51]. Therefore, we performed a com-
parison between iCW773-simulated and experimentally 
performed genetic modification strategies with respect 
to 1,2-propanediol and isobutanol overproduction [50, 
51]. As previously reported, a three-reaction synthesis 
route by the heterologous genes mgsA, gldA, and yqhD, 
which encode methylglyoxal synthase, glycerol dehy-
drogenase, and alcohol dehydrogenase from E. coli, was 
added to iCW773 to synthesize 1,2-propanediol from 
dihydroxyacetone phosphate (dhap) [50]. Then, the 
ranges of flux variability in the network for the WT and 
1,2-propanediol-overproducing strains were calculated 
by OptForceMUST (Additional file 7). As shown in Fig. 4a, 
upregulation of mgsA, gldA, and yqhD directed the flux 
toward 1,2-propanediol synthesis, which was consist-
ent with the finding that the heterologous expression of 
these three genes in the WT strain led to a product yield 
of 0.13  mol/mol (1,2-propanediol/glucose) [50]. Moreo-
ver, model simulation showed that the deletion of hdpA 
encoding dihydroxyacetone phosphate phosphatase 
could increase the precursor (dhap) supply by preventing 
glycerol formation from dhap, which was supported by 
the experimental results that 1,2-propanediol production 
increased by 90.08% in strain WT∆hdpA (pEKEx3-mgsA-
gldA-yqhD) [50]. The OptForceMUST analysis indicated 
that knockout of ldh encoding lactate dehydrogenase 
could further decrease the formation of byproducts and 
increase 1,2-propanediol production. This prediction was 
validated by the experimental finding that ldh deletion 
increased 1,2-propanediol by 37.75% [50]. In addition, 
downregulation of tpiA, gap, pgk, and gpmA would be 
novel targets for 1,2-propanediol overproduction.

As reported previously, the isobutanol pathway in 
iCW773 was constructed by kivd-encoding keto acid 
decarboxylase from Lactococcus lactis and native adhA-
encoding alcohol dehydrogenase catalyzing 3-methyl-
2-oxobutanoate to isobutanol [52]. The predicted 
knockout, upregulation, and downregulation of target 
genes by OptForceMUST are shown in Fig. 4b (Additional 
file  7). The simulation was consistent with the experi-
mental results that the upregulation of four genes (alsS, 
ilvCD, kivd, and adhA) could endow C. glutamicum with 
isobutanol synthesis capability [52]. The OptForceMUST 
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analysis indicated that the decrease in pyruvate con-
sumption caused by inactivating ldh-encoding lactate 
dehydrogenase and downregulating the aceE-encoding 
pyruvate dehydrogenase subunit would increase isobu-
tanol synthesis. In vivo ldh deletion increased the isobu-
tanol yield by 23%, while deletion of aceE led to pyruvate 

overflow to lactate formation rather than increased isob-
utanol synthesis [52]. It was reported that aceE deletion 
caused C. glutamicum to be unable to grow with glu-
cose unless supplemented with acetate, indicating that 
knockout of aceE has a negative effect on cell growth and 
that knockdown of aceE, as suggested by the iCW773 

Fig. 3  Application for overproduction of l-lysine using OptForceMUST. Comparison of the flux ranges for reactions in iCW773 and ModelCg 2. Genes 
encoding relevant enzymes are depicted with italics next to the arrows: acn: aconitase; dapA: dihydrodipicolinate synthase; dapB: dihydrodipi-
colinate reductase; ddh: diaminopimelate dehydrogenase; fbp: fructose-1, 6-bisphosphatase; hom: homoserine dehydrogenase; icd: isocitrate 
dehydrogenase; lysA: diaminopimelate decarboxylase; lysC: aspartokinase; pck: phosphoenolpyruvate carboxykinase; pyc: pyruvate carboxylase; tal: 
transaldolase; tkt: transketolase; zwf: glucose 6-phosphate dehydrogenase. 26dap-m: meso-2,6-diaminoheptanedioate; 23dhdp: (2S,4S)-4-hydroxy-
2,3,4,5-tetrahydrodipicolinate; accoa: acetyl-CoA; akg: α-oxoglutarate; aspsa: l-aspartate 4-semialdehyde; cit: citrate; e4p: erythrose-4-phosphate; f6p: 
fructose-6-phosphate; fdp: fructose 1,6-bisphosphate; g3p: glyceraldehyde phosphate; g6p: glucose-6-phosphate; Glc: glucose; icit: isocitrate; l-asp: 
l-aspartate; l-hom: l-homoserine; l-lys: l-lysine; oaa: oxaloacetate; pep: phosphoenolpyruvate; pyr: pyruvate; ru5p-D: ribulose-5-phosphate; s7p: 
sedoheptulose-7-phosphate; succ: succinate; thdp: 2,3,4,5-tetrahydrodipicolinate; xu5p-D: xylulose-5-phosphate
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simulation, might be a better alternative [53]. In addi-
tion, the iCW773-simulated strategy to improve isobu-
tanol synthesis included an increase in the intracellular 
NADPH pool by downregulation of pgi in combination 
with upregulation of zwf. This combined regulation mode 
for pgi and zwf had been demonstrated to increase intra-
cellular NADPH levels by redirecting carbon flux toward 
PPP [9]. In contrast, deletion of pgi together with aceE 
severely inhibited growth and eliminated isobutanol 
production [52]. Taken together, these data indicate that 
downregulation of aceE and pgi together with upregu-
lation of zwf would contribute to isobutanol synthesis 
and simultaneously maintain growth. In summary, the 
iCW773-designed strategy could provide insights into 
future work for the optimization of 1,2-propanediol and 
isobutanol production in C. glutamicum.

In silico design and wet‑lab construction of an 
l‑proline‑overproducing strain
Despite the strong flux toward l-glutamate formation in 
C. glutamicum, l-proline converted from l-glutamate 
under three sequential catalytic reactions by γ-glutamyl 
kinase (proB), glutamate-5-semialdehyde dehydroge-
nase (proA), and pyrroline-5-carboxylate reductase 
(proC) has not been efficiently synthesized by the engi-
neered strain derived from C. glutamicum ATCC13032 
[54–56]. The heterologous expression of ornithine 
cyclodeaminase merely made an l-ornithine-producing 
strain overproduce l-proline by six enzymatic reac-
tions from l-glutamate, which was not an economically 
feasible means of carbon utilization in l-proline syn-
thesis [56, 57]. Thus, iCW773 was applied to identify 
metabolic interventions that led to the overproduction of 

Fig. 4  Application for overproduction of the non-natural products 1,2-propanediol (a) and isobutanol (b) using OptForceMUST. Genes encoding 
relevant enzymes are depicted with italics next to the arrows: aceE: pyruvate dehydrogenase complex; adhA: alcohol dehydrogenase; alaS: acetolac-
tate synthase; gap: glyceraldehyde-3-phosphate dehydrogenase; gldA: glycerol dehydrogenase; gpmA: phosphoglycerate mutase; hdpA: dihydroxy-
acetone phosphate phosphatase; ilvC: acetohydroxyacid isomeroreductase; ilvD: dihydroxyacid dehydratase; ilvE: valine transaminase; kivD: keto 
acid decarboxylase; ldh: lactate dehydrogenase; mgsA: methylglyoxal synthase; pgi: glucose-6-phosphate isomerase; pgk: phosphoglycerate kinase; 
tpiA: triose-phosphate isomerase; yqhD: aldehyde reductase. For other genes, see Fig. 3. 12ppd: 1,2-propanediol; 13dpg: 3-phospho-d-glyceroyl 
phosphate; 23dhmp: 2,3-dihydroxy-3-methylbutanoate; 2pg: d-glycerate 2-phosphate; 3mob: 3-methyl-2-oxobutanoate; 3pg: 3-phospho-d-glycer-
ate; 6pgl: 6-phospho-d-glucono-1,5-lactone; acetol: acetol; alas-S: 2-acetolactate; dha: dihydroxyacetone; dhap: dihydroxyacetone phosphate; ibth: 
isobutyraldehyde; isob: isobutanol; l-lac: l-lactate; mthgxl: methylglyoxal; l-val: l-valine. For other abbreviations, see Fig. 3
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l-proline via OptForceMUST (Additional file 8). As shown 
in Fig. 5a, the upregulation of five reactions in the glyco-
lytic pathway and citrate synthase (CS, encoded by gltA) 
and downregulation of α-oxoglutarate dehydrogenase 
(AKGDH, encoded by kgd) predicted by iCW773 were 
consistent with those predicted by ModelCg 2. The differ-
ences between the iCW773 and ModelCg 2 simulations 
were the downregulation of reactions from pyruvate to 
l-valine and l-alanine and upregulation of aconitase 
[ACONTa(b), encoded by acn] and isocitrate dehydro-
genase (ICDHyr, encoded by icd), which converts citrate 
to α-oxoglutarate. The largest difference between the two 
models was the knockout of the putA gene to block the 
conversion of Δ1-pyrroline-5-carboxylate to glutamate. 
PutA is a bifunctional enzyme with both proline dehy-
drogenase and Δ1-pyrroline-5-carboxylate dehydroge-
nase activities, which catalyzes the two-step oxidation 
of l-proline to glutamate in E. coli [58]. In iCW773, the 
reaction from l-glutamate to Δ1-pyrroline-5-carboxylate 
formed a cycle in the presence of PutA, which made it 
inefficient to convert Δ1-pyrroline-5-carboxylate to 
l-proline. Blocking this conversion and upregulation of 

Δ1-pyrroline-5-carboxylate reductase (encoded by proC), 
the flux could be efficiently directed toward l-proline 
synthesis. Then, the PutA reactions were deleted in both 
models to predict the metabolic profile of overproduc-
ing l-proline (Additional file  9). As shown in Fig.  5b, 
one difference between the iCW773 and ModelCg 2 
simulations was the upregulation of ProB to direct the 
metabolic flux from l-glutamate toward l-proline syn-
thesis. However, the reaction from glutamate-5-semi-
aldehyde to Δ1-pyrroline-5-carboxylate, which differed 
in the ModelCg 2 simulation, was impossible to control 
by genetic modification because this reaction occurred 
spontaneously without enzymatic catalysis.

To validate the accuracy of the iCW773 prediction 
for l-proline overproduction, different targets between 
the iCW773 and ModelCg 2 simulations were chosen for 
genetic modification. Because the enzymatic activity of 
ProB is strictly restricted to feedback inhibition by l-pro-
line, no accumulation of l-proline will occur in WT [59]. 
Therefore, the feedback inhibition of ProB by l-proline 
was first released through the introduction of the nucle-
otide substitution G446A into the chromosomal proB 

Fig. 5  Metabolic interventions predicted using OptForceMUST for l-proline overproduction in wild-type C. glutamicum ATCC13032 (a) predicted 
by iCW773 (left) and ModelCg 2 (right) and in the mutant strain C. glutamicum ATCC13032 ΔputA (b) predicted by iCW773 (left) and ModelCg 2 
(right). Genes encoding relevant enzymes are depicted in italics next to the arrows: fda: fructose-bisphosphate aldolase; gltA: citrate synthase; 
kgd: α-oxoglutarate dehydrogenase; pfkA: phosphofructokinase; proA: glutamate-5-semialdehyde dehydrogenase; proB: γ-glutamyl kinase; proC: 
pyrroline-5-carboxylate reductase; putA: proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase. For other genes, see Figs. 3 and 
4. 1pyr5c: Δ1-pyrroline-5-carboxylate; glu5p: glutamate-5-phosphate; glu5sa: glutamate-5-semialdehyde; l-ala: l-alanine; l-glu: l-glutamate; l-pro: 
l-proline. For other abbreviations, see Figs. 3 and 4
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gene [60]. The Pro-1 strain accumulated a small amount 
of l-proline compared with the WT (Table  1). Notably, 
the l-proline titer dropped after 36  h (Fig.  6a), indicat-
ing that l-proline may be converted to l-glutamate under 
PutA catalysis as simulated by iCW773. When putA was 
knocked out in Pro-1, the l-proline production of Pro-2 
was 1.92-fold higher than that of Pro-1 (Table 1), which 
was consistent with a previous report that deletion of 
putA significantly increased the formation of trans-4-l-
hydroxyproline derived from l-proline in recombinant E. 
coli BL21 [61]. In addition, the product yield of l-proline 
from glucose was improved 1.94-fold upon deleting putA 
(Fig. 6a).

Upregulation of gltA, acn, and icd expression was 
simulated by iCW773 to drive more carbon flux to 
α-oxoglutarate formation for l-proline synthesis. It has 
been demonstrated that CS flux in  vivo is not strictly 
controlled by the amount of gltA expression [62], while 
the transcription of the acn gene is subjected to com-
plex regulations mediated by the AcnR, RipA, and GlxR 
repressors [63, 64]. Thus, aconitase-catalyzed reactions 
should be a major control point in the TCA cycle dur-
ing growth on glucose [64, 65]. The effects of increased 
ACONTa(b) flux on cell metabolism and l-proline syn-
thesis were simulated using FBA. The fluxes toward CS 
and ICDHyr were enhanced with the increase in the 
relative ACONTa(b) flux, and maximum extracellular 
l-proline production was achieved when the relative 
ACONTa(b) flux was improved by 2.5-fold compared 
with WT (Fig. 6b). Conversely, the fluxes toward l-valine 
and l-alanine synthesis decreased. After the native pro-
moter of the acn gene was replaced with three promot-
ers of varying strength (PglyA, Ppck, and Peftu) and the 
start codon was changed from TTG to ATG in Pro-2, 
the mRNA levels of the acn gene increased by 1.47-, 
1.82-, and 2.83-fold in the Pro-3, Pro-4 and Pro-5 strains, 
respectively (Fig. 6c). With upregulation of the acn gene, 
the mRNA levels of gltA in Pro-4 and Pro-5 increased by 
50.82 and 88.52%, respectively, consistent with a previ-
ous observation that the expression of gltA and acn were 
simultaneously increased and might be controlled by a 
similar mechanism [65]. However, no significant changes 
were observed in the mRNA level of icd or kgd (Fig. 6c). 
When the mRNA levels of acn were increased, Pro-5 pro-
duced 2.26 ±  0.03 g/L l-proline with a 33.73% increase 
over Pro-2. Correspondingly, the byproducts of l-alanine 
and l-valine decreased by 16.95 and 8.09%. The extracel-
lular metabolites exhibited a 73.34% decrease in citrate 
and a 1.37-fold increase in α-oxoglutarate.

Finally, to validate the positive correlation between 
GLU5K flux and l-proline yields (Additional file  4: Fig-
ure S2), the mutant proB (G446A) under the control 
of Ptac on a plasmid was induced to overexpress the 

feedback-resistant γ-glutamyl kinase. When the mRNA 
level of proB* was significantly increased, the mRNA 
levels of the proA, proC, and gdh genes were simulta-
neously increased (Fig.  6c). The resultant Pro-6 strain 
showed an 8.27-fold increase in l-proline production 
(18.71 ± 0.21 g/L), with 8.18- and 9.03-fold increases in 
yield (0.36  g/g) and productivity (0.32  g/L/h), respec-
tively, compared with Pro-5 (Fig.  6a). In addition, 
there were 85.55 and 45.42% decreases in extracellular 
α-oxoglutarate and succinate, respectively.

The performance of Pro‑6 in fed‑batch fermentation
The production performance of the final Pro-6 strain 
was investigated in fed-batch fermentation. As shown in 
Fig.  7, the strain grew continuously from 0 to 32  h and 
reached a cell concentration of OD600 = 109.02 at 32 h. 
The assimilated glucose was efficiently channeled to 
the l-proline biosynthetic pathway; l-proline produc-
tion began at an early stage and continuously increased 
throughout the fermentation period. A major and con-
stant increase in l-proline production was achieved dur-
ing the feeding phase, which was initiated after the initial 
sugar (40 g/L) in the batch medium was consumed. The 
maximal specific growth rate of strain Pro-6 was 0.40 h−1, 
and the maximal specific glucose consumption rate 
was 5.46  mmol/gDCW/h. The maximal l-proline titer 
reached 66.43 g/L at 60 h with a yield of 0.26 g/g glucose 
(0.41 mol/mol glucose) and a productivity of 1.11 g/L/h. 
Consequently, the genetically engineered Pro-6 strain 
in this study was demonstrated to be an efficient l-pro-
line-producing strain without any nutrition-auxotroph 
and with the highest titer and productivity reported on 
minimal medium with glucose as the sole carbon source 
(Table 2).

Conclusions
In this study, we reconstructed a genome-scale metabolic 
model of C. glutamicum ATCC13032 with an expanded 
size and scope compared with the previous ModelCg 2. 
The iCW773-simulated results of growth rates, metabolic 
flux profiles, and modification targets for overproducing 
natural and non-natural products were much more con-
sistent with experimental data than those of ModelCg 2. 
Moreover, in silico analysis of l-proline overproduction 
and modifications of only three genes (putA, acn, and 
proB) cooperatively forced carbon flux toward l-proline, 
with the highest titer and productivity reported on mini-
mal medium. This work revealed that the genome-scale 
metabolic model successfully guided the wet-lab experi-
ments. This development will further boost C. glutami-
cum, one of the most promising and valuable workhorses, 
into a new era of industrial microbial biotechnology 
beyond the classical field.
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Methods
Genome‑scale metabolic model reconstruction
The reconstruction of the C. glutamicum ATCC13032 
metabolic network was conducted based on the model of 
Shinfuku et al. [22]. A 96-step procedure for metabolic net-
work reconstruction was recently published [66], and the 
appropriate steps were followed after new genes, reactions, 
and metabolites were added to generate iCW773. The 
KEGG (http://www.genome.jp/kegg/) and UniProt (http://
www.uniprot.org/) databases were referenced to obtain 
reaction information and reaction-gene associations 

during the draft reconstruction stage, and iJO1366 was 
referenced to obtain the abbreviations of the same metab-
olites between C. glutamicum and E. coli [17]. The charge 
and mass of reactions in iCW773 were automatically bal-
anced using the CheckMassChargeBalance command in 
Cobra Toolbox, and reversibility was assigned based on 
the Gibbs free energy by the eQuilibrator database (http://
equilibrator2.milolab.webfactional.com/). Cobra Tool-
box 2.05 with MatLab 2010b (MathWorks Inc.) was used 
for additional model testing [67], and the glpk solvers were 
used for the optimization procedures [68].

Fig. 6  Analysis of l-proline-overproducing strains. a Flask cultivation of different C. glutamicum strains. b Simulation of the impact of increased 
ACONTa(b) flux on cellular metabolism for robustness analysis was investigated with increasing relative ACONTa(b) fluxes (between 1.0 and 5.0). 
X-axis relative ACONTa(b) flux (the ratio of the test ACONTa(b) flux to the native ACONTa(b) flux). Relative ACONTa(b) flux = 1.0 served as the control 
(or native GPD flux). Y-axis relative flux of the pathways (the ratio of the test flux to the native flux). Yellow represents no change, red represents 
upregulation, and blue represents downregulation of the flux. Descriptions of abbreviated reaction names are provided in Additional file 3. c Rela-
tive transcript expression of related genes of the analyzed C. glutamicum strains in the exponential growth phase in glucose. Significant differences 
in the data were determined using Student’s t test (*P < 0.05, **P < 0.01). The data were derived from experiments performed at least three times, 
and the error bars represent the standard deviations

http://www.genome.jp/kegg/
http://www.uniprot.org/
http://www.uniprot.org/
http://equilibrator2.milolab.webfactional.com/
http://equilibrator2.milolab.webfactional.com/
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Flux balance analysis
The growth rates and metabolic flux distribution of C. 
glutamicum ATCC13032 were calculated using FBA with 
commercially available glpk and Matlab software [16, 18]. 
To simulate growth rates and metabolic flux distribu-
tions, biomass production was set as the objective func-
tion. For the simulation of growth rates under different 
glucose and oxygen levels, glucose and oxygen uptake 
rates were set as the experimental values, as shown in 
Fig.  1a. For the simulation of growth rates on different 
carbon sources, the uptake rate of related carbon source 
was set as the experimental value, as shown in Fig.  1b. 
Small molecular external metabolites such as CO2, H2O, 
SO3, NH3, and PO4 were allowed to be freely transported 
across the cell membrane.

OptForceMUST
The flux variability analysis was conducted to calculate 
each reaction’s flux span for both the wild-type and 
overproducing strains. A 13C flux and a relatively high 
secretion rate analyses were employed to constraint 
the wild-type and overproducing-type simulations, 
respectively [69]. The flux ranges for each reaction 
were compared, and some reactions of the overpro-
ducing strain need to be genetically modified through 

up/downregulation or knockout if no overlap between 
the flux range of the wild-type strain and that of the 
overproducing strain was found. A pool of modified 
reactions to construct the overproducing-type strain 
was produced.

To analyze the overproductions of the native and non-
native metabolites, 13C flux data of the wild-type strain 
on glucose under aerobic condition were used as the con-
straints of the maximal range of flux variability [8, 31, 41]. 
For the non-native product, simulations of 1,2-propan-
ediol and isobutanol production were performed after 
the heterogeneous reactions were added to iCW773, as 
described in Additional file 10. We imposed a minimum 
production yield of 98% of the theoretical maximum for 
l-lysine, l-valine, l-serine, l-proline, 1,2-propanediol, 
and isobutanol; the biomass flux was constrained to at 
least 1% of its theoretical maximum; and the l-lysine, 
l-valine, l-serine, l-proline, 1,2-propanediol, and isob-
utanol transport reactions were set as the target reac-
tions, respectively. The upper and lower bounds of the 
13C-tracer experimental fluxes are listed in Additional 
file 10 [8, 31, 41]. OptForceMUST was used to identify the 
reactions/genes that required to be up/downregulated or 
knocked out to maximize the production of the targeted 
metabolites.

Strains and plasmids
Wild-type C. glutamicum ATCC13032 (American Type 
and Culture Collection, Manassas, VA, USA) was used 
as the parental strain for strain engineering. The E. 
coli strain EC135 was used as the cloning host, and the 
pXMJ19 and pK18mobsacB plasmids were applied for 
gene overexpression with induction of isopropyl-β-d-
thiogalactopyranoside (IPTG) and gene deletion, respec-
tively [70]. All of the strains and plasmids used in this 
study are listed in Additional file 1: Table S3.

Constructions of plasmids and strains
Total genomic DNA was extracted from C. glutami-
cum according to a previously described procedure [71]. 

Fig. 7  Fed-batch culture of Pro-6 in a 7.5-L bioreactor

Table 2  Overview of l-proline-producing strains

a  Estimated from reference
b  Achieved in fed-batch fermentation

Strain Breeding Medium Titer (g/L) Yield (g/g) Productivity (g/L/h) References

Pro-6 Metabolic engineering Minimal medium 18.71 ± 0.21 0.36 ± 0.01 0.32 ± 0.01 This work

66.43b 0.26b 1.11b

Corynebacterium glutamicum Metabolic engineering Minimal medium 0.25–0.30a 0.25–0.30a [57]

Corynebacterium glutamicum Metabolic engineering Minimal medium 12.70 0.36 0.42 [56]

Corynebacterium acetoacido-
philum

l-Histidine auxotroph; muta-
tion

YPD medium 42b 1.66b [55]

Serratia marcescens SP511 Mutation Complete medium 100b 1.04ab [54]
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To construct a C. glutamicum strain carrying a point 
mutation resulting in an amino acid substitution from 
glycine to aspartate at position 149 of the ProB polypep-
tide, the proB gene was first deleted in the WT strain. 
The upstream and downstream homologous fragments 
of proB were amplified using PCR with primers P1/P2 
and P3/P4. The amplified DNA fragments were spliced 
using overlap extension PCR and were ligated into the 
suicide vector pK18mobsacB [72]. The plasmids were 
verified by DNA sequencing and then transformed into 
the WT strain through electroporation to generate the 
WTΔproB strain, which was further verified by sequenc-
ing. In a second step, the mutation was introduced into 
the proB gene by PCR amplification with the primers 
P1/P7 and P8/P4. The amplified DNA fragments were 
spliced using overlap extension PCR and ligated into the 
suicide vector pK18mobsacB. The obtained plasmid was 
transformed into the WTΔproB strain to generate the 
Pro-1  (WTproB*) strain [60]. For deletion of the putA 
gene, previously isolated WT genomic DNA was amplified 
using PCR with primers P9/P10 and P11/P12. The ampli-
fied DNA fragments were spliced using overlap extension 
PCR and ligated into the suicide vector pK18mobsacB. 
The plasmids were verified by DNA sequencing and then 
transformed into the Pro-1  (WTproB*) strain through 
electroporation to generate the Pro-2  (WTproB*∆putA) 
strain, which was further verified by sequencing.

To replace the native promoter of the acn gene with the 
promoter of pck, the RBS sequence with ‘AAAGGAGGA,’ 
and the start codon with ATG, three fragments corre-
sponding to the upstream region of acn, the introduced 
modulation element including the pck promoter and the 
RBS as well as the acn gene were amplified with prim-
ers P15/P16, P17/P18, and P19/P20, respectively. These 
fragments were spliced using overlap extension PCR and 
ligated into the suicide vector pK18mobsacB. The plas-
mids were verified by DNA sequencing and then trans-
formed into the Pro-2  (WTproB*∆putA) strain through 
electroporation to generate the Pro-3  (WTproB*Ppck:
:Pacnacn*∆putA) strain, which was further verified by 
sequencing. Similarly, the promotor of the acn gene was 
altered in Pro-2 (WTproBG446A∆putA), which gener-
ated Pro-4 (WTproB*PglyA::Pacnacn*∆putA) and Pro-5 
(WTproB*Peftu::Pacnacn*∆putA).

The C. glutamicum and E. coli shuttle vector pXMJ19 
was used for the overexpression of the proB* gene [73]. For 
amplification of the proB* gene, genomic DNA isolated 
from Pro-1 (WTproB*) was amplified using PCR with prim-
ers P31/P32. Then, the amplified DNA fragment was ligated 
into the shuttle vector pXMJ19. The plasmids were verified 
by DNA sequencing and then transformed into the Pro-5 
(WTproB*Peftu::Pacnacn*∆putA) strain through electropora-
tion to generate the Pro-6  (WTproB*Peftu::Pacnacn*∆putA/

pXMJ19-proB*) strain. When needed, 0.1  mM IPTG was 
added to the culture medium to induce target gene over-
expression. The primers used in this study are provided in 
Additional file 1: Table S4.

Media and cultivation
The E. coli strains were aerobically grown at 37  °C in 
Luria–Bertani medium [74]. The C. glutamicum strains 
were cultivated in brain heart infusion (BHI) medium 
(37 g/L brain heart infusion with 91 g/L sorbitol) at 30 °C 
for genetic disruption and complementation [75]. As a 
minimal medium, CGXII medium was used with 40 g/L 
glucose [76]. When necessary, antibiotics were added at 
the following concentrations: 50  μg/mL kanamycin or 
20 μg/mL chloramphenicol for E. coli and 25 μg/mL kan-
amycin or 10 μg/mL chloramphenicol for C. glutamicum.

In the shake-flask growth experiment, C. glutamicum 
strains were precultured in the CGIII seed medium at 30 °C 
and 200 rpm until the OD600 reached 12. One milliliter of 
seed culture was inoculated in a 500-mL baffled shake flask 
with 30 mL of CGXII minimal medium. The cells were cul-
tured in triplicate at 30 °C and shaken at 220 rpm. The pH 
was maintained at 7.0–7.2 via ammonia supplementation.

The fed-batch fermentation was performed in a 7.5-L 
bioreactor (BioFlo®/CelliGen®115, New Brunswick, USA) 
with a working volume of 2 L of CGX medium contain-
ing 40 g/L glucose. After 3 h of growth, 0.1 mmol/L IPTG 
was added for the induction of Ptac. The concentration 
of glucose over all of the fed-batch cultures was main-
tained within the range of 5 ± 5 g/L by supplying 800 g/L 
of glucose reservoir. The glucose reservoir was fed into 
the fermenter at the rate of 0.2–0.5  mL/min according 
to the residual glucose concentration. The temperature 
was maintained at 32 °C using cold water circulation. The 
pH was maintained at 6.9 via the automated addition of 
ammonia and 100 mmol/L H3PO4. Dissolved oxygen was 
determined using a pO2 electrode and maintained above 
30% saturation via variation of the stir speed.

Analytical methods
The glucose concentration was measured using an SBA-
40D biosensor analyzer (Institute of Biology of Shan-
dong Province Academy of Sciences, Shandong, China). 
The cell concentration was determined by measuring 
the absorbance at 600  nm (OD600) using a spectropho-
tometer (V-1100D; Mapada Instruments, Shanghai, 
China). The dry cell weight (DCW) per liter was calcu-
lated using an experimentally determined formula: DCW 
(g/L) = 0.27 × OD600 [77]. The amino acids in the culture 
supernatant were determined using high-performance 
liquid chromatography with a Zorbax Eclipse XDB-C18 
column (4.6 mm × 150 mm, 5 μm; Agilent) at 40 °C and 
360 nm after derivatization with 2,4-dinitrofluorobenzene. 
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Mobile phase A was 55% (v/v) acetonitrile, and mobile 
phase B consisted of 40  mmol/L KH2PO4 at pH 7.0–7.2. 
The flow rate of the mobile phase was 1  mL/min. The 
organic acids in the culture supernatant were determined 
using high-performance liquid chromatography with 
a SB-Aq column (4.6 × 250 mm; 5 μm; Agilent) at 40 °C 
and 210 nm. Mobile phase A was acetonitrile, and mobile 
phase B consisted of 20 mmol/L KH2PO4 at pH 2.3. The 
flow rate of the mobile phase was 1 mL/min.

RNA preparation and quantitative RT‑PCR
Corynebacterium glutamicum strains were grown to 
the exponential phase in CGXII minimal medium as 
described above. The cells were harvested and the total 
RNA was isolated using an RNAprep Pure Cell/Bacteria 
Kit (Tiangen, China). Reverse transcription of approxi-
mately 400  ng of RNA was performed with the primers 
listed in Additional file 1: Table S4 using a FastQuant RT 
Kit (Tiangen, China). Quantitative PCR was performed 
using GoTaq qPCR master mix (Promega, USA) in a 
20-μL mixture with a LightCycler® 96 Real-Time PCR 
System (Roche, Switzerland). The C. glutamicum rpoB 
gene was used as the reference gene to normalize the gltA, 
acn, icd, kgd, gdh, proB, proA, and proC mRNA levels [70]. 
Negative controls were used in each PCR run to exclude 
DNA and other contaminants. The qPCR products were 
verified via a melting curve analysis. Data collection and 
analyses were conducted using LightCycler® 96 software 
(Roche, Switzerland) with the 2−∆∆CT method [78].
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Additional file 1: Table S1. Comparison of GEM attributes among vari-
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prediction of the genes and proteins involved in the overproduction of 
l-valine and l-serine with the experimental data. Table S3. Strains and 
plasmids used in this study. Table S4. Primers used in this study.

Additional file 2. The lumped reactions of ModelCg 2.

Additional file 3. The reactions and metabolites of iCW773.

Additional file 4: Figure S1. The central metabolic network of C. glu-
tamicum. Fig. S2. Robustness analysis of GLU5K flux on l-proline produc-
tion rate by Pro-2 and Pro-5.

Additional file 5. The flux distribution values for simulations on acetate, 
lactate and xylose using FBA by iCW773.

Additional file 6. Overproduction of l-lysine in WT using OptForceMUST 
by iCW773 and ModelCg 2.

Additional file 7. Overproduction of 1,2-propanediol and isobutanol in 
WT using OptForceMUST by iCW773.

Additional file 8. Overproduction of l-proline in WT using OptForceMUST 
by iCW773 and ModelCg 2.
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