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Abstract 

Background:  Using liquid digestate from the biogas industry as a medium to culture lipid-producing microalgae is 
considered mutually beneficial for digestate valorization and for reducing the cost of microalgal cultivation. How-
ever, the low transmittance and high ammonium (NH4

+-N) levels in liquid digestate negatively influence microalgae 
growth.

Results:  Struvite precipitation was used to pretreat liquid digestate. To obtain struvite-precipitated supernatant with 
an ideal transmittance, NH4

+-N concentration, salinity, and N:P ratio for microalgal growth, there should be a 1:1.2:1.2 
NH4

+:Mg2+:PO4
3− molar ratio in the liquid digestate, with KH2PO4 and MgCl2 added through continuous stirring. The 

addition and stirring was subsequently stopped when the pH reached 8.5. Of the nine tested microalgae species, 
Dictyosphaerium ehrenbergianum exhibited the best growth in the supernatant. The biomass productivity and lipid 
content of D. ehrenbergianum cultured in the struvite-precipitated supernatant were 161.06 mg/l/days and 34.33%, 
respectively, which was higher than when cultured in the standard BG-11 medium. Moreover, the struvite-precipi-
tated supernatant improved the accumulation of monounsaturated fatty acids and saturated fatty acids.

Conclusions:  This study described a new way to combine liquid digestate treatment and microalgal biodiesel pro-
duction. The struvite-pretreated liquid digestate can be used to culture D. ehrenbergianum for biodiesel production.
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Background
Microalgae are considered one of the most promising 
biofuel feedstocks [1, 2]. However, the high cultivation 
cost is still a limiting factor for its further commerciali-
zation [3]. Using wastewater for microalgal cultures is 
considered mutually beneficial, because the wastewa-
ter provides nutrients for microalgal growth, while the 
microalgae remove pollutants from the wastewater [4, 5].

Digestate is an important byproduct of the anaero-
bic digestion of organic waste [5, 6]. Traditionally, land 
application is the primary method for managing diges-
tate from livestock farms [7]. However, with the rapid 

development of the biogas industry, the volume of diges-
tate has increased substantially in recent years. Land 
application and other digestate processing techniques 
require large energy inputs and increase environmental 
risk, especially with respect to liquid digestate from large 
scale biogas plants in large livestock or poultry farms 
[6]. Digestate management has become a major bottle-
neck in the development of the biogas industry, as well 
as for the livestock and poultry breeding industry [8]. On 
the other hand, the liquid digestate is rich in nitrogen 
(N), phosphorous (P), potassium (K), and other nutri-
ents essential for microalgal growth [9]; thus, its use as a 
microalgal culture medium is considered a new opportu-
nity for digestate valorization [6, 9].

Culturing microalgae in liquid digestate can reduce 
the cost of nutrients for microalgal cultivation, while 
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simultaneously reusing liquid digestate [9]; however, 
there are some limiting and inhibitory factors in liquid 
digestate-based microalgal cultivation. First, the high 
turbidity of liquid digestate, caused by suspended mate-
rials, can lead to low transmittance. This reduces the 
efficiency of photosynthesis and the growth of microal-
gae [10]. Moreover, the ammonium-nitrogen (NH4

+-N) 
levels in liquid digestate are usually high and can poten-
tially inhibit microalgal growth [11]. Pretreatments, such 
as separation and dilution, are often used to reduce the 
negative effects associated with high NH4

+-N and turbid-
ity; however, these processes consume a large quantity of 
energy and fresh water [9].

Struvite (magnesium ammonium phosphate; MAP) 
precipitation can reduce NH4

+ and suspended solids (SS) 
in wastewater under alkaline conditions, while simulta-
neously generating slow-release fertilizer [12, 13]. This 
technique has been also used to recover N from diges-
tate [14]. However, the pH of liquid digestate is usually 
neutral or weak alkaline, and it has less PO4

3− and Mg2+ 
compared to NH4

+. As such, chemicals containing PO4
3−, 

Mg2+, or OH− must be added to facilitate effective NH4
+ 

removal [15, 16]. As a result, the candidate supernatant 
for microalgal culture following precipitation usually has 
a high pH and salinity, as well as an unsatisfactory N:P 
ratio for microalgal growth. The suggested optimal N:P 
mass ratio for microalgal growth is approximately 7:1, 
based on the composition of microalgae [17]; however, 
the N:P molar ratio in liquid digestate is usually adjusted 
to approximately 1:1 (mass ratio around 0.45) at the 
beginning of the reaction to achieve a high precipitation 
efficiency [18, 19]. In fact, the remaining N and P levels, 
as well as the N:P ratio in the supernatant, are under the 
control of the reaction conditions, such as pH value and 
PO4

3−:Mg2+:NH4
+ molar ratios [19]. Thus, one goal of 

this study was to determine the optimal combination of 
chemical additives and reaction conditions of struvite 
precipitation in liquid digestate, to obtain an optimal 
supernatant for microalgal growth.

Most microalgae prefer neutral environments; as such, 
the high pH and salinity in the struvite-precipitated 
supernatant may negatively affect algal growth. However, 
reducing the pH and salinity in the supernatant is usually 
not economical. Microalgal species have a range of opti-
mal pH and salinities, with some species tolerating high 
pH and salt conditions [20]. Selecting high pH and salt 
tolerant species is beneficial for culturing microalgae in 
liquid digestate after struvite precipitation. Therefore, in 
this study, struvite precipitation was selected as a diges-
tate pretreatment technique to determine the optimal 
combination of chemical additives and reaction condi-
tions, and to investigate suitable microalgal species. This 

provides a new way for combining liquid digestate treat-
ment and microalgal cultivation [21].

Methods
Liquid digestate collection and characterization
The liquid digestate used in this study was obtained 
from a pig farm located in Jianyang, Sichuan province in 
China. The samples were collected from a storage pond 
after treatment in an anaerobic continuous stirred tank 
reactor (CSTR) with the raw materials of swine wastewa-
ter after separation. They were immediately transported 
to the laboratory and stored at 4 °C until use.

Microalgal strains and growth medium
Nine microalgal strains were collected from the Fresh-
water Algae Culture Collection at the Institute of Hydro-
biology (FACHB-Collection, Wuhan, China), including 
Chlorella regularis FACHB-1068, Chlorella pyrenoidosa 
FACHB-9, Botryococcus braunii FACHB-357, Scened-
esmus obliquus FACHB-417, Dictyosphaerium ehren-
bergianum FACHB-1223, Haematococcus pluvialis 
FACHB-712, Spirulina subsalsa FACHB-351, Spirulina 
platensis FACHB-900, and Spirulina maxima FACHB-
438. The three Spirulina strains were cultured in the Spir-
ulina medium [22] and the other strains were cultured in 
BG-11 medium [23].

Experimental procedures
Struvite precipitation
MgSO4·7H2O, MgCl2·6H2O, and MgO were used as 
sources of Mg2+; and K2HPO4·3H2O, KH2PO4, and 
NaH2PO4 were used as sources of PO4

3−; Fig.  1 and 
Table 1 show the combinations tested in this study.

Fig. 1  Effect of Mg2+ and PO4
3− sources and stirring time on trans-

mittance (NH4
+:Mg2+:PO4

3− molar ratios at 1:1.2:1.2, pH at 9.0, and 
constant rate at 150 rpm). Errors bars show standard deviation (n = 3)
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To evaluate the effect of the Mg2+ and PO4
3− sources 

and stirring time on struvite reaction, 300  ml of liquid 
digestate were fed into a 500-ml beaker. After this, dif-
ferent combinations of Mg2+ and PO4

3− sources were 
added and mixed by continuous stirring with a mag-
netic stirrer at a constant rate (150  rpm) to make the 
PO4

3−:Mg2+:NH4
+ molar ratios of each solution at 

1:1.2:1.2. When the exogenous compounds were dis-
solved, the pH of the mixture was adjusted to 9.0 using 
0.1-M NaOH [19]. The stirring continued for 0, 1, 2, 5, 
10, and 20  min after the pH reached 9.0; stirring then 
stopped to allow sampling. A 10-ml sample of each mix-
ture was placed into its own 15-ml centrifuge tube. After 
settling for 30 min, the supernatant from each centrifuge 
tube was used for analysis.

To select the best precipitation conditions for optimal 
microalgal growth in terms of residual NH4

+-N concen-
tration and N:P mass ratio, further experiments were 
done at different pH values (8.0, 8.5, and 9.0) and at dif-
ferent P:Mg:N molar ratios (1:1:0.95, 1:1:1, and 1:1.2:1.2) 
with the ideal Mg2+ and PO4

3− sources and stirring pat-
tern identified above.

Microalgal cultivation
The struvite-precipitated supernatant obtained above 
acted as a nutrient source to cultivate nine microalgal 
strains. Each strain was cultivated in an Erlenmeyer flask 
(250 ml) as a single batch (100-ml working volume) at a 
constant temperature (25  °C). A 12-h light/12-h dark 
cycle was provided using daylight fluorescent tubes with 
a photon flux density of 40–50  μmol/m2/s. The cultures 
were manually shaken 2–3 times per day to prevent bio-
mass sedimentation as described previously [24]. The bio-
mass in each Erlenmeyer flask was after 7-day cultivation.

Once a suitable microalgal strain was chosen, labora-
tory-scale cultivations were conducted in 1.2  l reactors 
(1  l working volume) for 10-day cultivation. Either stru-
vite-precipitated supernatant or BG-11 was used as the 
culture medium. An ambient air flow of 0.2  l/min was 
provided to each reactor in a 12 h/12 h cycle, consistent 
with the photoperiod described above.

Analytical methods
Water quality analysis
The pH value and salinity of the solution was measured 
using a pH meter and conductivity meter, respectively. 
Transmittance was measured using spectrophotome-
try at 680 nm [25]. Chemical oxygen demand (COD) was 
determined according to standard methods described 
by APHA [26]. After filtration through a 0.45 μm mem-
brane, the concentration of NH4

+-N and NO3
−-N was 

analyzed using an AA-3 autoanalyzer (Bran + Luebbe, 
Germany). PO4

3−-P was measured by the molybdate-
ascorbic acid colorimetric method described by APHA 
[26]. Scanning electron microscopy and X-ray diffraction 
analysis were used to analyze the struvite precipitate.

The struvite precipitate collected from the bottom of 
the beakers was dried at room temperature (25 ± 2  °C) 
and ground using a mortar. The powder (with particles 
that passed through a 200 mesh) was imaged using scan-
ning electron microscopy (Hitachi SU1510, Japan) with 
an energy-dispersive spectrometer system (SEM–EDS) 
(Horiba EX-250, Japan). The crystal structures of struvite 
precipitation were measured using X-ray powder diffrac-
tometer (XRD) (Bruker D8 ADVANCE, Germany). The 
scattering was operated at a power level of 60 kV and at 
80 mA. The data were recorded at a speed of 4°/min over 
the angular range of 10°–60°.

Microalgal growth and total lipid analysis
The specific growth rate (μ) based on dry cell weight 
(DCW) was used to evaluate the growth of each micro-
algal strain in the struvite-precipitated supernatant. 
To determine DCW, 10-ml microalgae samples were 
collected and centrifuged at 3200g for 10  min and 
then washed twice in 0.5  M of ammonium formate 
(HCOONH4) to remove impurities. The harvested 
microalgae were dried in an oven at 60 °C until the sam-
ples reached a constant weight. The samples were sub-
sequently cooled to room temperature in a desiccator 
before weighing. The specific growth rate (μ) was calcu-
lated as follows:

In this expression, Xfinal and X0 are DCW (mg/l) at the 
first (t0) and last time point (tfinal), respectively.

Growth curves based on DCW, biomass productivity 
(BP), and lipid productivity (LP) were used to calculate 
the growth status of the selected microalgal strain. To 
draw the growth curve, 10-ml microalgae samples were 
collected from the 1.2-l reactors every day, and the DCW 
was measured as described above. At the end of the 
exponential phase, the BP was calculated using the fol-
lowing equation:

(1)µ = (lnXfinal−lnX0)/(tfinal−t0).

Table 1  Effect of  KH2PO4 and  NaH2PO4 on  transmittance, 
NH4

+-N removal rate, and salinity

Results are expressed as the mean ± SD (n = 3)
a,b,c  Different letters in the same row indicate significant differences at p < 0.05

Combinations Transmittance 
(%)

Salinity (%) NH4
+-N removal 

rate (%)

KH2PO4 + MgCl2 80.83 ± 0.43a 0.67 ± 0.03a 93.18 ± 0.74a

NaH2PO4 + MgCl2 74.76 ± 0.11b 0.77 ± 0.05b 89.18 ± 0.02b
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This calculation applied two time intervals of DCW 
(mg/l).

The total lipid content was extracted using an extrac-
tion method adapted from Bligh [27]. Approximately 
0.1 g of dried microalgae powder was transferred into a 
10-ml glass tube, and 3-ml 2:1 chloroform–methanol 
(v/v) mixture was then added. This mixture was blended 
with a vortex mixer at room temperature for 10  min. 
Then, 1-ml methanol was added to the mixture and 
blended for 1 min; 1.8-ml distilled water was then added 
to the mixture and blended for 5  min. Finally, the mix-
ture was centrifuged at 3200g for 10  min. The organic 
phase was transferred to another glass tube and washed 
twice using a 5% NaCl solution. The final organic phase 
was carefully collected, the solvents were dried at 60  °C 
in an oven, and the weight of the remaining lipids was 
recorded. The total lipid content was calculated as a per-
centage of the total biomass (in % DCW). LP was calcu-
lated using Eq. (3):

Fatty acid profile analysis
Fatty acid content and composition analysis were deter-
mined in two consecutive steps, including the prepara-
tion of fatty acid methyl ester (FAME) and the analysis 
using Gas Chromatography–Mass Spectrometry (GC–
MS) (Agilent, USA). FAME was prepared using a 
one-step extraction–transesterification method, as 
described by Indarti et  al. [28], with a minor modifica-
tion. Dried microalgal samples (approximately 500  mg) 
were weighed into clean, 50-ml screw-top glass bottles, 
to which a 20  ml mixture of methanol, concentrated 
sulfuric acid, and chloroform (4.25:0.75:5) were added. 
Transesterification was carried out in a 90 °C water bath 
for 90 min. Once the reaction was completed, the chloro-
form layer containing the FAME was carefully collected 
for GC–MS analysis. The oven temperature was set at 
80 °C, held steady for 5 min, was then raised to 290 °C at 
a rate of 4 °C/min, and was then held at 290 °C for 5 min. 
The resulting compounds were identified in the NIST 
Mass Spectral Database and quantified by the area nor-
malization method.

Statistical analysis
Each experiment was performed in triplicate and was 
repeated at least three times. The experimental results 
were reported as the mean value of each parameter with 
standard deviation. Statistical analysis was performed 

(2)BP
(

mg/l/day
)

= (DCWtfinal−DCWt0)/(tfinal−t0).

(3)
LP

(

mg lipid/l/day
)

= BP× lipid content× 100.

using a one-way analysis of variance (ANOVA) followed 
by a Tukey pairwise comparison, using Origin 10.0. A p 
value < 0.05 was considered statistically significant.

Results and discussion
Optimization of struvite precipitation
The concentrations of COD, NH4

+-N, NO3
−-N, and 

PO4
3−-P in the digestate used in this study were 629.05, 

591.2, 0.07, and 9.87 mg/l, respectively. The pH value was 
8.2; the transmittance was 0.11%; and the salinity was 
0.26%.

Additional Mg2+ and PO4
3− ions were required to 

achieve high struvite precipitation efficiency in the liq-
uid digestate. The sources of Mg2+ and PO4

3− signifi-
cantly affected the quality of the struvite-precipitated 
supernatant [12]. In this study, six combinations were 
first tested at a NH4

+:Mg2+:PO4
3− molar ratio of 1:1.2:1.2 

and a pH of 9.0, as described by Perera et  al. [19]. Fig-
ure  1 shows that the combination of KH2PO4 + MgCl2 
resulted in the highest transmittance at the first test 
time point (0 min), reaching 80%; this combination was 
followed by KH2PO4 + MgSO4, K2HPO4 + MgCl2, and 
K2HPO4 + MgSO4, which resulted in transmittances 
of more than 60%. The two MgO combinations exhib-
ited low transmittance due to the low solubility, while 
the K2HPO4 + MgO combination resulted in the low-
est transmittance of approximately 10%. This indicated 
that KH2PO4 and MgCl2 were the better choices for 
obtaining supernatant with high transmittance after 
struvite precipitation.

In addition, the maximum transmittance of each 
combination occurred when the pH reached 9.0, and it 
gradually decreased with continued stirring (Fig. 1). The 
struvite formed flocs and rapid precipitation reduced the 
suspended solids, thereby improving the transmittance 
of the liquid digestate. Continuous stirring could destroy 
the flocs, causing suspended fine particles that could 
decrease the transmittance. Therefore, in subsequent 
experiments, the stirring was stopped as soon as the pH 
reached the predetermined value.

The NH4
+-N removal rate and the salinity of the 

supernatant were measured after 30  min of sedimen-
tation at the first test time point (0 min). The NH4

+-N 
removal rate displayed the same trends as the transmit-
tance (Fig. 2). The combination of KH2PO4 + MgCl2 also 
resulted in the highest NH4

+-N removal rate, at more 
than 90%. In addition, the KH2PO4 resulted in a lower 
salinity, while the MgCl2 resulted in a higher salinity than 
with MgO and MgSO4; however, the two MgO combi-
nations were not considered due to low light transmit-
tance and NH4

+ removal. The remaining two KH2PO4 
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combinations were considered as alternatives. The salin-
ity of KH2PO4 + MgCl2 was 0.63%, which was slightly 
higher than KH2PO4 + MgSO4.

In nature, microalgae have a large species diver-
sity, allowing them to adapt to salinity changes. In the 
open ocean, salinity varies between 3.3 and 3.7% [29], 
which is significantly higher than the salinity obtained 
in this study. Moreover, salt stress could increase the 
lipid content of some microalgal species [30]. Of the 
six combinations, we selected KH2PO4 + MgCl2 for 

further investigation. Other studies have confirmed that 
the dominant form of P in MAP formation reaction 
is H2PO4

− or HPO4
2− [31]. In this study, the H2PO4

− 
achieved better results with higher transmittance, 
NH4

+-N removal rate, and lower salinity. Yetilmezsoy 
and Sapci-Zengin [32] found similar results when recov-
ering NH4

+-N from the effluent of a UASB treating poul-
try manure using MAP precipitation.

NaH2PO4 is often used as a PO4
3− source for struvite 

precipitation [12]. As such, we further analyzed the dif-
ferences between NaH2PO4 and KH2PO4. The results 
indicate that the KH2PO4 + MgCl2 combination achieves 
higher transmittance, higher NH4

+ removal rate, and 
lower salinity (Table 1). The MgKPO4·6H2O (MKP) is one 
of the struvite analogs, but it is more likely to form if NH4

+ 
concentrations are low [31, 33]. The liquid digestate used 
in this study was high in NH4

+; the presence of K+ did not 
interfere with removing NH4

+. Otherwise, potassium is an 
essential macronutrient and is most abundantly absorbed 
cation playing an important role in algae growth.

The initial NH4
+:Mg2+:PO4

3− molar ratio and pH of 
the reaction system significantly affected the precipita-
tion results [12], especially with respect to the remain-
ing N and P in the struvite-precipitated supernatant, 
which determined the NH4

+-N levels and N:P mass ratio 
in the supernatant. High NH4

+-N may inhibit microal-
gal growth, but inhibitory thresholds vary widely within 
microalgal species [9]. In general, when the NH4

+-N 
concentrations are below 100  mg/l, the growth of most 
microalgae will not be significantly inhibited [11, 34]. 
Only at a NH4

+:Mg2+:PO4
3− ratio of 1:1:0.95, and a pH 

8.0 and 8.5, did the remaining NH4
+-N in the superna-

tant exceed 100 mg/l (Table 2).
The initial NH4

+-N concentration of the liquid diges-
tate used in this study was 591.2 mg/l. As more PO4

3− and 
Mg2+ was added, less NH4

+-N remained. In addition, at 

Fig. 2  Effect of Mg2+ and PO4
3− sources on NH4

+-N removal rate and 
salinity (NH4

+:Mg2+:PO4
3− molar ratios at 1:1.2:1.2, the stirring was 

stopped as soon as the pH reached to 9.0). Errors bars show standard 
deviation (n = 3). Different letters indicate a significant difference at 
p < 0.05

Table 2  Characteristics of struvite-precipitated supernatant under different NH4
+:Mg2+:PO4

3− molar ratio and pH

Results are expressed as the mean ± SD (n = 3)
a,b,c  Different letters in the same row indicate significant differences at p < 0.05

NH4
+:Mg2+:PO4

3− 
molar ratio

pH NH4
+-N (mg/l) NO3

−-N (mg/l) PO4
3−-P (mg/l) N:P mass ratio Transmittance 

(%)
Salinity (%) NH4

+-N removal 
rate (%)

1:1:0.95 8.0 142.52 ± 2.10a 0.692 ± 0.021a 35.47 ± 0.48a 4.12 ± 0.68a 70.00 ± 0.76a 0.72 ± 0.21a 81.18 ± 0.37a

8.5 118.71 ± 0.48b 0.771 ± 0.049a 29.87 ± 0.32b 4.05 ± 0.22a 71.12 ± 0.66a 0.69 ± 0.11b 83.33 ± 0.08b

9.0 78.06 ± 0.25c 0.755 ± 0.074a 26.24 ± 0.70c 3.06 ± 0.42b 71.78 ± 0.74a 0.70 ± 0.01ab 86.41 ± 0.04c

1:1:1 8.0 90.07 ± 0.08d 0.030 ± 0.019b 34.12 ± 0.39d 2.70 ± 0.73b 74.65 ± 1.33b 0.67 ± 0.07b 85.32 ± 0.01d

8.5 83.78 ± 0.82e 0.092 ± 0.076b 22.78 ± 0.51e 3.75 ± 0.04b 77.36 ± 1.34b 0.61 ± 0.08b 86.41 ± 0.14c

9.0 66.56 ± 0.52f 0.063 ± 0.048b 16.36 ± 0.07f 4.16 ± 0.23a 74.82 ± 0.86b 0.62 ± 0.08b 88.41 ± 0.09e

1:1.2:1.2 8.0 71.08 ± 1.38 g 0.053 ± 0.032b 18.92 ± 1.52 g 3.86 ± 0.57b 72.19 ± 1.53a 0.64 ± 0.03b 89.62 ± 0.24f

8.5 57.85 ± 0.66 h 0.046 ± 0.042b 8.51 ± 0.84 h 7.04 ± 0.72c 78.28 ± 0.38bc 0.66 ± 0.03b 91.63 ± 0.11 g

9.0 38.95 ± 0.74i 0.071 ± 0.016b 7.02 ± 1.21 h 5.65 ± 0.43d 79.60 ± 0.01d 0.67 ± 0.02b 93.22 ± 0.13 h
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the same NH4
+:Mg2+:PO4

3− molar ratio, the remaining 
NH4

+-N concentration decreased with an increasing pH 
value. At a NH4

+:Mg2+:PO4
3− ratio of 1:1.2:1.2 and pH of 

9.0, the NH4
+-N concentration in supernatant was as low 

as 38.95 mg/l, indicating a NH4
+ removal rate of more than 

90% (Table 2). This led to the hypothesis that this method 
could be used to treat liquid digestates containing up to 
1000 mg/l of NH4

+-N, to meet the 100-mg/l NH4
+-N con-

centration requirements for microalgal growth.
The N:P ratio is another important factor affecting 

microalgae growth. According to the typical microalgae 
composition formula (C106H181O45N16P), optimal micro-
algae growth occurs when the mass ratio of N to P that 
can be absorbed by microalgae is approximately 7:1 [17]. 
NH4

+-N, NO3
−-N, and PO4

3−-P are the main forms of N 
and P absorbed by microalgae [35]; as such, the ratio of 
the sum of NH4

+-N and NO3
−-N to PO4

3−-P was used 
to evaluate the N:P ratio in this study. The N:P mass ratio 
in the supernatants ranged from 2.70 to 7.04 (Table  2). 
At a NH4

+:Mg2+:PO4
3− molar ratio of 1:1.2:1.2 and a pH 

of 8.5, the N:P mass ratio in the supernatant was 7.04, 
approaching the ideal value. Moreover, at this condition, 
the supernatant had the second highest transmittance 
and NH4

+ removal rate.
The shape and composition of the precipitates formed 

at a NH4
+:Mg2+:PO4

3− molar ratio of 1:1.2:1.2 and a pH 
of 8.5 were further analyzed using SEM–EDS and XRD 
techniques. The precipitates showed a typical orthorhom-
bic crystal shape and surface characterization (Fig.  3A), 
similar to results obtained from other pig slurry and 
described by Cerrillo et al. [18]. The crystal surface linked 
some ‘amorphous’ materials and contained a trace level 
of carbon (C). This probably related to the suspended sol-
ids generated from the liquid digestate. The XRD patterns 
also support the findings that the precipitates were made 

up of a mixture of struvite and amorphous materials. The 
prominent peaks of the precipitate matched the stand-
ard model for struvite very well, but there was an uneven 
baseline induced by the amorphous material (Fig.  3B). 
Flocculating suspended solids is one of the reasons that 
struvite precipitation improves the transmittance.

In summary, to achieve optimal transmittance, 
NH4

+-N levels and N:P mass ratio for microalgal growth, 
the NH4

+:Mg2+:PO4
3− ratio of the liquid digestate should 

first be adjusted to 1:1.2:1.2 using KH2PO4 and MgCl2 
with continuous stirring. The pH should then be adjusted 
to 8.5 by adding NaOH. At that point, the stirring should 
be stopped. The supernatant obtained under this condi-
tion was used for the subsequent microalgae culture.

Screening of suitable algal species
Nine microalgal species were cultured in the struvite-
precipitated supernatant (Table 3). After 7 days of culti-
vation, D. ehrenbergianum showed the highest specific 
growth rate, followed by C. regularis FACHB-1068 and 
S. obliquus FACHB-417. In contrast, C. pyrenoidosa 
FACHB-9, B. braunii FACHB-357, H. pluvialis FACHB-
712, and S. platensis FACHB-900 showed almost no 
growth during this period.

The genus Dictyosphaerium is found in both marine 
and fresh water environments [36] and some species in 
this genus have a strong ability to adapt to extreme envi-
ronments [37]. For example, D. chlorelloides can survive 
in alkaline and moderately acidified aquatic environ-
ments containing hexavalent chromium [38] and Dicty-
osphaerium sp. has been found in high rate algal ponds 
(HRAPs) used for wastewater treatment [39]. D. ehren-
bergianum was designated as a type species of the genus 
of Dictyosphaerium [37]. To date, research on this species 

Fig. 3  Scanning electron microscopy with energy dispersive analysis (a) and X-ray diffraction patterns (b) of struvite from liquid digestate 
(NH4

+:Mg2+:PO4
3− molar ratios at 1:1.2:1.2, the stirring was stopped as soon as the pH reached to 8.5)
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has mainly focused on its taxonomy [40, 41]; therefore, 
this study provides a novel application for this alga.

Growth of D. ehrenbergianum in struvite‑precipitated 
supernatant
The growth curve of D. ehrenbergianum based on 
DCW was monitored in both the struvite-precipitated 
supernatant and BG-11 (Fig.  4). After a 1-day adap-
tation period, D. ehrenbergianum showed a higher 
growth rate in the supernatant than in BG11. By the 
seventh day, the growth of D. ehrenbergianum cultured 
in BG-11 stagnated; however, D. ehrenbergianum con-
tinued to grow in the supernatant. BG-11 medium, 
designed to cultivate blue–green algae, is now widely 
used to grow many microalgal strains, including the 
genus Dictyosphaerium [23, 38]; however, our results 
indicate that the struvite-precipitated supernatant 

was more conducive to D. ehrenbergianum biomass 
accumulation.

Table 4 shows the biomass and lipid productivity of D. 
ehrenbergianum in both the supernatant and BG-11 after 
10  days of cultivation in the same culture conditions. 
The microalgae exhibited higher biomass productivity 
(161.06 mg/l/days) in the supernatant than in the BG-11 
media. However, the biomass productivity is still lower 
than reported in other studies [42]. This may be because 
of the low light intensity  of the light incubator (about 
40–50  μmol/m2/s) used for this study; similar results 
were also found in Chlorella sp. [43].

In this study, the lipid level of D. ehrenbergianum 
cultured in BG-11 was 23.67%, which is close to the 
level found for Dictyosphaerium CFR 5-01/FW by Vid-
yashankar et  al. [44]. However, the lipid content of D. 
ehrenbergianum cultured in the struvite-precipitated 
supernatant was as high as 34.33%, resulting in lipid 
productivity of 55.29  mg/l/days. This indicates that the 
supernatant was also beneficial for D. ehrenbergianum 
lipid accumulation. Other research has shown that lipid 
accumulation can be promoted when microalgal cells 
are cultivated in stressed conditions, such as high salin-
ity [45]. By adding KH2PO4 and MgCl2, the presence of 
K+, and other ions, increased the salinity (from 0.26 to 
0.66%) of the supernatant following struvite precipita-
tion; therefore, the increased salinity in the supernatant 
did not inhibit microalgae growth, but actually contrib-
uted to greater lipid accumulation.

The predominant fatty acids of D. ehrenbergianum cul-
tured in both the struvite-precipitated supernatant and 
BG-11 were C16 and C18 (Table 4), which are the main 

Table 3  Specific growth rate (μ) of  different microalgae 
strains cultured in struvite-precipitated supernatant

Results are expressed as the mean ± SD (n = 3)
a,b,c  Different letters in the same row indicate significant differences at p < 0.05

Species Specific growth rate

Chlorella regularis FACHB-1068 0.097 ± 0.016a

C. pyrenoidosa FACHB-9 –

Botryococcus braunii FACHB-357 –

Scenedesmus obliquus FACHB-417 0.089 ± 0.026a

Dictyosphaerium ehrenbergianum FACHB-1223 0.144 ± 0.025b

Haematococcus pluvialis FACHB-712 –

Spirulina subsalsa FACHB-351 0.069 ± 0.031c

S. platensis FACHB-900 –

S. maxima FACHB-438 0.084 ± 0.015a

Fig. 4  Growth curve of Dictyosphaerium ehrenbergianum in struvite-
precipitated supernatant and BG-11. Errors bars show standard 
deviation (n = 3)

Table 4  Biomass productivity, lipid content, lipid produc-
tivity, and fatty acid profiles of Dictyosphaerium ehrenber-
gianum in struvite-precipitated supernatant and BG-11

In struvite-precipitated 
supernatant

In BG-11

Biomass productivity (mg/l/
days)

161.06 ± 3.71 84.87 ± 6.24

Lipid content (% DW) 34.33 ± 1.52 23.67 ± 1.15

Lipid productivity (mg/l/
days)

55.29 ± 2.37 20.09 ± 1.83

Fatty acids (% of total fatty acids)

 C16:0 21.09 ± 1.04 17.46 ± 0.62

 C18:0 3.27 ± 0.16 1.32 ± 0.33

 C16:1 7.43 ± 0.13 2.41 ± 0.47

 C18:1 13.48 ± 0.63 11.05 ± 0.59

 C16:2 7.05 ± 0.75 8.60 ± 0.50

 C16:3 9.46 ± 0.60 15.42 ± 1.21

 C18:2 17.76 ± 0.73 20.23 ± 1.21

 C18:3 19.37 ± 0.73 22.24 ± 1.09
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components of biodiesels [10]. This indicates that the 
oil from D. ehrenbergianum is an ideal biodiesel alterna-
tive. The microalgae biodiesels usually have poor oxida-
tive stability due to the low monounsaturated fatty acid 
(MUFA) and saturated fatty acid (SaFA) content [46]. The 
proportion of total MUFAs and SaFAs of D. ehrenber-
gianum increased from 32.24% in BG-11 to 45.27% in the 
supernatant, whereas the proportion of polyunsaturated 
fatty acid (PUFA) was decreased. This indicated that the 
lipid profiles of D. ehrenbergianum could change with 
growth conditions, the supernatant generated through 
in this study was more favorable for culturing D. ehren-
bergianum for ideal biodiesel production. Similar results 
were also found in the previous study [47].

Conclusions
This study constructed a new way to combine liquid 
digestate treatment and microalgal cultivation. The study 
also determined the optimal struvite precipitation condi-
tions for pretreating liquid digestate intended for use as 
a microalgal culture medium. KH2PO4 and MgCl2 were 
the optimum source of Mg2+ and PO4

3− to adjust the 
NH4

+:Mg2+:PO4
3− molar ratio to 1:1.2:1.2. Continued 

stirring should be stopped when the pH reaches 8.5. D. 
ehrenbergianum grew best in the struvite-precipitated 
supernatant, which enhanced D. ehrenbergianum bio-
mass productivity and lipid content, and also improved 
the accumulation of MUFAs and SaFAs. The struvite-
precipitated liquid digestate can be used to culture D. 
ehrenbergianum for biodiesel production.
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