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Abstract 

Background:  Microalgae are a promising biomass feedstock for biofuels production. The use of wastewater efflu-
ent as a nutrient medium would improve the economics of microalgal biofuels production. Bacterial communities in 
aquatic environments may either stimulate or inhibit microalgal growth. Microalgal productivity could be enhanced 
if the positive effects of indigenous bacteria could be exploited. However, much is unknown about the effects of 
indigenous bacteria on microalgal growth and the characteristics of bacterial communities associated with microal-
gae in microalgae–effluent culture. To assess the effects of the indigenous bacteria in wastewater effluent on microal-
gal growth, three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris, and Euglena gracilis, were cultured in two 
municipal wastewater effluents and one swine wastewater effluent with and without indigenous bacteria for 7 days.

Results:  All microalgae grew better in all effluents with indigenous bacteria than without bacteria. Biomass produc-
tion of C. reinhardtii, C. vulgaris, and E. gracilis increased > 1.5, 1.8–2.8, and > 2.1-fold, respectively, compared to the 
axenic cultures of each microalga. The in situ indigenous bacterial communities in the effluents therefore promoted 
the growth of the three microalgae during 7-day cultures. Furthermore, the total numbers of bacterial 16S rRNA 
genes in the 7-day microalgae–effluent cultures were 109‒793 times the initial numbers. These results suggest that 
the three microalgae produced and supplied organic carbon that supported bacterial growth in the effluent. At the 
phylum and class levels, Proteobacteria (Alphaproteobacteria and Betaproteobacteria) and Bacteroidetes (Sphingobacte-
riia and Saprospirae) were selectively enriched in all microalgae–effluent cultures. The enriched core bacterial families 
and genera were functions of the microalgal species and effluents. These results suggest that certain members of the 
bacterial community promote the growth of their “host” microalgal species.

Conclusion:  To enhance their own growth, microalgae may be able to selectively stimulate specific bacterial groups 
from among the in situ indigenous bacterial community found in wastewater effluent (i.e., microalgae growth-pro-
moting bacteria: MGPB). The MGPB from effluent cultures could be used as “probiotics” to enhance microalgal growth 
in effluent culture. Wastewater effluent may therefore be a valuable resource, not only of nutrients, but also of MGPB 
to enable more efficient microalgal biomass production.
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Background
Microalgae have attracted extensive global attention as 
a promising biomass feedstock for biofuels production 
because of their high growth rates and high capability 
to accumulate lipids. The use of wastewater effluent as 
a nutrient medium would improve the economics and 
sustainability of microalgal biofuels production [1–3]. 
Microalgal biomass production using wastewater effluent 
is considered to have several advantages over production 
of terrestrial energy crops because there is no need for 
extra fertilization or irrigation, and it does not compete 
with food crop production or agricultural land use. Also, 
coupling microalgal production with wastewater treat-
ment would turn wastewater treatment plants into net 
energy-producing facilities [4]. However, microalgal bio-
fuels production is still energy intensive, costly, and then 
not yet economically viable. To develop more efficient 
microalgal biofuel production, it is necessary to enhance 
microalgal biomass yields in microalgae–wastewater 
effluent cultivation facilities.

The growth of microalgae is affected by physicochemi-
cal factors such as irradiance, temperature, nutrient con-
centrations, CO2 concentrations, and pH [5, 6]. There 
have been many studies aimed at enhancing microal-
gal growth through optimization of growth conditions, 
including the above-mentioned physicochemical factors 
[7–10]. However, the influence of indigenous microor-
ganisms on microalgal growth has often been overlooked 
in microalgal biomass production using wastewater 
effluent.

In natural aquatic environments, interactions between 
microalgae and bacteria in the phycosphere [11], the 
region surrounding a phytoplankton or microalgal cell, 
are well documented [12–14]. Certain bacteria in the 
microalgal phycosphere can promote microalgal growth 
by creating a favorable microenvironment [15] and by 
providing nutrients [16], vitamins [17], phytohormones 
[18], chelators [19], or volatile organic compounds 
[20]. In contrast, certain bacteria can inhibit microalgal 
growth by lysis of microalgae [21], by producing growth-
inhibiting compounds [22], or by competing with micro-
algae for nutrients [23]. In addition, some bacteria can 
initially promote microalgal growth but ultimately kill 
their microalgal host [24–27]. The bacterial community 
can therefore potentially increase or decrease the pro-
ductivity of microalgae. It is important to identify the 
kinds of bacteria that promote microalgal growth and 
then to determine which types of bacteria—those with 
positive or those with negative effects on microalgal 
growth—predominate in the indigenous bacterial com-
munity in wastewater effluent.

If the positive effects of indigenous bacteria on the 
growth of microalgae can be controlled and used in 

microalgae–effluent culture in combination with phys-
icochemical approaches to optimize microalgal biomass 
production, microalgal productivity could be greatly 
enhanced. However, knowledge about the effects of 
indigenous bacteria on microalgal growth and about the 
characteristics of the bacterial community associated 
with microalgae in microalgae–effluent culture is still 
limited. Previous studies have investigated the effects of 
single bacterial species on microalgal growth in micro-
algal culture media. Examples include the enhanced 
growth of Chlorella vulgaris by a plant growth-promot-
ing bacterium Azospirillum brasilense [28], enhanced 
growth of Botryococcus braunii by Rhizobium sp. [29] and 
“Candidatus Phycosocius bacilliformis” [30], enhanced 
growth of Tetraselmis striata by Pelagibaca bermuden-
sis and Stappia sp. [31], and enhanced growth of Chla-
mydomonas reinhardtii, C. vulgaris, Scenedesmus sp., 
and B. braunii by Rhizobium sp. [32]. To the best of our 
knowledge, there have been no studies clearly showing 
the potential for promotion of the growth of commonly 
used microalgae by indigenous bacterial communities 
in common wastewater effluent with the expectation of 
exploiting that potential to enhance microalgal biomass 
production. To develop a strategy for increasing the effi-
ciency of microalgal biomass production systems using 
wastewater effluent, it will be necessary to comprehen-
sively examine the effects of indigenous bacterial com-
munities in various types of wastewater effluent on the 
growth of different microalgal species.

The main objectives of this study were therefore (i) to 
determine the effects of the indigenous bacteria in waste-
water effluent on the growth of microalgae and (ii) to 
characterize the bacterial communities associated with 
different microalgal species growing in various waste-
water effluents. In this study, we separately cultured 
three microalgal species, C. reinhardtii, C. vulgaris, and 
Euglena gracilis, in three different wastewater effluents: 
the secondary effluent from a municipal wastewater 
treatment plant sampled on two different dates, and the 
effluent from a secondary plant treating swine wastewa-
ter. Growths of the three microalgae in the three different 
effluents were compared in the presence and absence of 
the living indigenous bacterial communities. The compo-
sitions of the indigenous bacteria were analyzed by 16S 
rRNA gene amplicon sequencing.

Methods
Microalgae and their axenic culture
Axenic C. reinhardtii (NIES-2235), C. vulgaris (NIES-
2172), and E. gracilis (NIES-48) were obtained from 
the Microbial Culture Collection, National Institute 
for Environmental Studies, Tsukuba, Japan. C. rein-
hardtii and C. vulgaris were cultured in C medium 
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(150  mg/L Ca(NO3)2·4H2O, 100  mg/L KNO3, 50  mg/L 
β-Na2glycerophosphate·5H2O, 40  mg/L MgSO4·7H2O, 
500  mg/L tris(hydroxymethyl)aminomethane, 0.1  μg/L 
vitamin B12, 0.1  μg/L biotin, 10  μg/L thiamine HCl, 
3  mL/L PIV metals [1000  mg/L Na2EDTA·H2O, 
196 mg/L FeCl3·6H2O, 36 mg/L MnCl2·4H2O, 10.4 mg/L 
ZnCl2, 4  mg/L CoCl2·6H2O, 2.5  mg/L Na2MoO4·H2O]; 
pH7.5). E. gracilis was cultured in CYP medium (C 
medium with 400 mg/L yeast extract and 600 mg/L poly-
peptone, pH 7.5). The three axenic microalgal cultures 
were incubated in a growth chamber at 28 ± 1  °C with 
fluorescent lamps at a photosynthetic photon flux den-
sity of 80 μmol m−2 s−1 and a 16-h:8-h light:dark cycle for 
1 week. Every week thereafter a subculture was started by 
routine transfer into fresh culture medium.

Wastewater samples
Three different wastewater samples were used in this 
study. Secondary municipal wastewater effluent (MW) 
was collected from the conventional activated sludge 
process of a municipal wastewater treatment plant in 
Kofu City, Yamanashi, Japan, on 22 November (MW1) 
and 15 December 2017 (MW2). Swine wastewater (SW) 
secondary effluent was collected from the conventional 
activated sludge process of a swine wastewater treatment 
plant in Chuo City, Yamanashi, Japan, on 22 January 
2017. Table  1 shows the water quality characteristics of 
the three effluent samples. The effluent samples were first 
passed through a glass microfiber filter (pore size, 1 μm; 
GF/B grade; GE Healthcare UK Ltd, Buckinghamshire, 
England) and then a membrane filter (pore size, 0.8 μm; 
mixed cellulose esters membrane; Merck Millipore Ltd, 
Cork, Ireland). The purpose of filtering the water was to 
avoid, insofar as possible, the effects of organisms larger 
than bacteria, including microalgae and protozoa, and to 
focus on bacterial effects.

Microalgal culture in wastewater with and without living 
indigenous bacteria
To examine the effects on microalgal growth of indig-
enous bacterial communities in effluent samples, the 
growth of microalgae was compared in the presence 

and absence of living indigenous bacteria. In prelimi-
nary experiments, two types of sterilized effluents were 
prepared: by filtration (pore size, 0.2  μm; mixed cellu-
lose esters membrane; Merck Millipore) or autoclaving 
(121  °C, 20  min). The growth levels of the three micro-
algae in both sterilized effluents were almost the same 
(Additional file  1). An effluent sample without living 
indigenous bacteria was therefore prepared by autoclav-
ing (121 °C, 20 min). A 100-mL aliquot of autoclaved or 
unautoclaved effluent was put into a 200-mL flask. For 
each of the three microalgae (C. reinhardtii, C. vulgaris, 
and E. gracilis), 1 mL of subculture was inoculated into 
separate flasks. Three replicate flasks were prepared for 
each combination of microalga and effluent. All flasks 
were incubated in the growth chamber (28 ± 1  °C with 
fluorescent lamps at 80  μmol  photons m−2  s−1 and a 
16-h:8-h light:dark cycle) for 7 days. Because the growths 
of the three microalgae in the effluents with and without 
indigenous bacteria reached the stationary phase within 
7  days, the experimental period was set to 7  days. All 
flasks were shaken for 1 min three times a day to disperse 
and aerate the microalgae. The chlorophyll concentra-
tion in each flask was measured daily as follows. One 
milliliter of culture was taken from each flask and cen-
trifuged (11,000×g, 5  min) to recover microalgae and 
bacteria. Chlorophyll was then estimated spectrophoto-
metrically after extraction in 100% methanol for 30 min 
[33]. Absorbance of the extract was measured at 665 nm 
(A665) and 650  nm (A650) with a spectrophotometer 
(UVmini-1240; Shimadzu Co. Ltd., Kyoto, Japan). The 
total chlorophyll (chlorophyll a + chlorophyll b: Chl a + b) 
concentration (μg/mL) was calculated on the assumption 
that it was proportional to 4 × A665 + 25.5 × A650. After a 
7-day incubation, the microalgal dry weight in each flask 
was measured as follows. From each flask, an aliquot of 
50 mL of the culture was collected and vortexed for 3 min 
to uniformly suspend bacterial and microalgal cells. 
Microalgal cells were recovered using a pre-weighed 
GF/B filter, dried, and weighed. In the preliminary 
experiments, we prepared the E. gracilis (0.44 ± 0.05 mg-
dry weight/mL) cultures with or without Escherichia coli 
(5.4 ± 2.2 × 106 CFU/mL) in triplicate and measured the 

Table 1  Water qualities of initial effluent samples

TOC total organic carbon

Effluent sample pH TOC (mg/L) Nitrogen (mg/L) PO4–P (mg/L)

NH4–N NO2–N NO3–N

Secondary effluent of municipal wastewater 1 (MW1) 7.1 18.9 4.0 0.3 5.4 3.2

Secondary effluent of municipal wastewater 2 (MW2) 7.4 10.2 2.2 0.1 1.8 2.1

Secondary effluent of swine wastewater (SW) 7.7 56.4 57.4 2.0 3.1 23.4
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dry weights of E. gracilis in both cultures. The dry weight 
of E. gracilis (0.42 ± 0.06  mg-dry  weight/mL) collected 
from the E. gracilis culture with E. coli by using the above 
method was the same as that (0.42 ± 0.03 mg-dry weight/
mL) from the E. gracilis culture without E. coli. The 
method thus quantified the dry weight of microalgal cells 
with little interference from coexisting bacterial cells.

Scanning electron microscopy of microalgal cell surfaces
For scanning electron microscopy (SEM), microalgal cells 
were collected by centrifugation (11,000×g, 5  min) and 
washed with sterilized C medium. Microalgal cells were 
then fixed with 4% osmium tetroxide solution at 4 °C for 
3 h, dehydrated with a stepwise increase of ethanol from 
30 to 100% at room temperature for 15  min each, and 
finally dried at the carbon dioxide critical point. Dried 
samples were coated using an Osmium Plasma Coater 
(OPC80T; Filgen, Nagoya, Japan) and then examined by 
SEM using a JEOL Scanning Microscope (JSM 6320F; 
JEOL Ltd., Tokyo, Japan).

Bacterial DNA extraction
Bacterial populations and communities in the original 
effluents and microalgae–effluent cultures were ana-
lyzed by 16S rRNA gene quantitative PCR (qPCR) and 
16S rRNA gene amplicon sequencing, respectively. To 
eliminate effects of microalgal chloroplast 16S rRNA 
gene on these bacterial 16S rRNA-based analyses, we 
removed microalgal cells and collected bacterial cells 
as follows. An aliquot of 10 mL of culture was collected 
from each flask, mixed with 5  mL of dispersing agent 
(5 mg/L sodium tripolyphosphate solution), and vortexed 
for 3  min to desorb bacteria from microalgal cells. The 
sample was then filtered through a GF/B glass microfiber 
filter to remove microalgal cells. The filtrate contain-
ing bacteria was again filtered through a membrane fil-
ter (pore size, 0.2 μm; mixed cellulose esters membrane; 
Merck Millipore) to collect bacterial cells. The total DNA 
of the bacteria on the membrane filter was extracted by 
using NucleoSpin Tissue (Takara Bio Inc., Shiga, Japan) 
according to the manufacturer’s protocol.

Quantification of bacterial 16S rRNA gene
The bacterial 16S rRNA gene was quantified by qPCR using 
a set of universal primers, 341F (5ʹ-CCT​ACG​GGA​GGC​
AGCAG-3ʹ) and 534R (5ʹ-TAC​CGC​GGC​TGC​TGG​CAC​
-3ʹ) [34], SYBR Premix Ex Taq II (Takara Bio), and a Ther-
mal Cycler Dice RealTime System II, model TP900/960 
(Takara Bio). The qPCR temperature program included an 
initial denaturation at 95 °C for 1 min, followed by 40 cycles 
of 95 °C for 5 s, annealing at 60 °C for 30 s, and extension at 
72 °C for 30 s. A standard curve for the 16S rRNA gene was 
created by using a custom-synthesized plasmid carrying 

the 16S rRNA gene sequence of E. coli. The qPCRs were 
performed in triplicate.

Phylogenetic analysis of the bacterial community
The extracted bacterial DNA samples were subjected to 
Illumina MiSeq 16S rRNA gene sequencing. The V4 region 
of the 16S rRNA gene was amplified by PCR using univer-
sal primers 515F (5′-Seq A-TGT GCC AGC MGC CGC 
GGT AA-3′) and 806R (5′-Seq B-GGA CTA CHV GGG 
TWT CTA AT-3′). The nucleotide sequences Seq A (ACA​
CTC​TTT​CCC​TAC​ACG​ACG​CTC​TTC​CGA​TCT) and 
Seq B (GTG​ACT​GGA​GTT​CAG​ACG​TGT​GCT​CTT​CCG​
ATCT) represent the sequences targeted by the second set 
of PCR primers described below. The first PCR program 
was as follows: an initial denaturing at 94 °C for 2 min; 20 
cycles of 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s; 
and an extension at 72  °C for 5  min. Fragments of 16S 
rDNA in the products of the first PCR were amplified again 
using the second PCR forward (5′-adaptor C-tag sequence 
Seq A-3′) and reverse primers (5′-adaptor D-Seq B-3′), 
where adaptors C and D were used for the MiSeq sequenc-
ing reaction. The tag sequence included eight nucleotides 
designed for sample identification bar coding. The second 
PCR program was as follows: an initial denaturing at 94 °C 
for 2 min; 8 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C 
for 30 s; and an extension at 72 °C for 5 min. PCR ampli-
cons were sequenced using an Illumina MiSeq Sequencer. 
Sequence reads were analyzed using sickle (ver 1.33), Fastx 
toolkit (ver 0.0.13.2), FLASH (ver 1.2.10), and USEARCH 
(ver 8.0.1623_i86linux64). These analyses involved the for-
mation of contigs, removal of error sequences, and removal 
of chimeras. All operational taxonomic units (OTUs) were 
clustered at a cutoff of 0.03 (97% similarity). Sequencing 
and sequence-read analyses were conducted in FASMAC 
(Kanagawa, Japan). Shannon diversity and principal coor-
dinate analysis (PCoA) were analyzed using Qiime ver 1.9.0 
[35]. Heatmap clustering was analyzed using R ver 2.15.2 
[36].

Statistical analysis
Each value used in the statistical analysis represented the 
results from three replicate samples per experiment. Each 
result was expressed as a mean ± SD. Significance (P < 0.05) 
was analyzed by using the t test in SPSS Statistics v. 22.0 
(IBM, Armonk, NY, USA).

Results and discussion
Growth and biomass production of C. reinhardtii, 
C. vulgaris, and E. gracilis in wastewater effluent 
with and without indigenous bacteria
To examine the effects of indigenous bacteria in waste-
water effluents on the growth of the microalgae C. rein-
hardtii, C. vulgaris, and E. gracilis, each microalgal 
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species was grown separately in the three effluents with 
or without indigenous bacteria for 7  days. The chloro-
phyll concentrations were significantly higher in the cul-
tures with bacteria than in the axenic microalgal cultures 
(P < 0.05) (Figs.  1 and 2). In the axenic microalgal cul-
tures, chlorophyll concentrations reached maximal levels 
and stopped increasing within 3–6  days. C. reinhardtii 
and E. gracilis did not grow in the axenic SW effluent. 
In contrast, the chlorophyll concentrations in the cul-
tures with bacteria tended to increase continuously until 
the end of the culture period. C. reinhardtii and E. gra-
cilis grew remarkably in SW effluent with bacteria. The 

biomass production of C. reinhardtii, C. vulgaris, and E. 
gracilis during the 7-day culture experiment increased 
> 1.5, 1.8–2.8, and > 2.1-fold, respectively, compared to 
the axenic cultures of each microalga (Table  2). These 
results strongly indicate that indigenous bacterial com-
munities in the effluents promoted the growth of the 
three microalgae or provided the microalgal partners 
with an essential compound.  

Bacterial communities in aquatic environments 
influence the growth of microalgae by both stimula-
tory and inhibitory effects [37]. In our 7-day culture 
experiments, interestingly, the promotion of microalgal 

Fig. 1  Changes in chlorophyll a + b content in microalgal cultures with indigenous bacteria (open circles) and without indigenous bacteria (closed 
squares) over 7 days. Values are means ± SDs (n = 3). MW1 municipal wastewater effluent 1, MW2 municipal wastewater effluent 2, SW swine 
wastewater effluent, CR Chlamydomonas reinhardtii, CV Chlorella vulgaris, EG Euglena gracilis 
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growth by indigenous bacterial communities in effluent 
was observed for all combinations of the three differ-
ent wastewater effluents and three different microalgal 
species. In contrast, no inhibitory effect on microal-
gal growth by the indigenous bacterial communities 
in the effluents was observed at least in 7-day culture 
experiment. We therefore hypothesized that microalgae 
growth-promoting bacteria (MGPB) are likely present 
in most wastewater effluents. Previously, MGPB have 

been isolated from seawater [37, 38], the phycospheres 
of continuous lab cultures of microalgae [15, 29‒32, 
39], and the rhizosphere of terrestrial plants [28]. For 
example, “Ca. Phycosocius bacilliformis” BOTRYCO-2 
enhanced the biomass productivity of B. braunii by 
1.8-fold [30], and P. bermudensis KCTC 13073BP 
increased the biomass productivity of T. striata two-
fold [31]. In our study, indigenous bacterial communi-
ties in the three effluents stimulated the growth of the 
three microalgal species to the same extent as previ-
ously reported for MGPB. These results suggest that, 
in addition to phycospheres and rhizospheres, waste-
water effluent could be a universal source of effective 
MGPB for various microalgal species. Although we 
cannot rule out the possibility that microalga essen-
tially require some common products of environmen-
tal bacteria, wastewater effluent can thus be a valuable 
resource, not only of nutrients [1–3], but also of MGPB 
to enhance microalgal biomass productivity. Several 
reports are available on not only the growth but also 
the change in cellular composition and flocculation 
of microalga when co-cultured with bacteria [20, 30, 
39–41]. In this study, lipid productivity was not consid-
ered and this still remaining as a future task. However, 
it may be worth to note that in most cases the content 
of lipids [20, 39, 41] and hydrocarbons [30] in micro-
algae increases by their associated bacteria. On the 
other hand, long-term effects of indigenous bacterial 
communities in effluents on microalgal growth must be 
examined in future studies because some bacteria can 
initially promote microalgal growth but eventually kill 
their microalgal host [24–27].

Fig. 2  Effect of indigenous living bacteria on growth of Euglena 
gracilis in municipal wastewater (MW) effluent. Representative 
photograph of E. gracilis in MW1 effluent with living bacteria (A) and 
without living bacteria (B) after 7 days

Table 2  Microalgal biomass production in microalgae–effluent culture with and without indigenous bacteria

Values are means ± SDs (n = 3)

MW1 municipal wastewater effluent sample 1, MW2 municipal wastewater effluent sample 2, SW swine wastewater effluent, ND not detectable, IC incalculable

Effluent sample Increase in microbial dry weight over 7 days (mg-dry weight/100 mL) and ratio 
of biomass of indicated species of microalga with bacteria to that without bacteria

Chlamydomonas reinhardtii Chlorella vulgaris Euglena gracilis

MW1

 With bacteria 42.0 ± 2.6 13.8 ± 3.4 24.4 ± 2.3

 Without bacteria 27.7 ± 6.4 7.5 ± 0.6 11.8 ± 0.6

 With bacteria/without bacteria ratio 1.5 1.8 2.1

MW2

 With bacteria 29.1 ± 4.7 8.6 ± 0.5 12.8 ± 5.5

 Without bacteria 18.7 ± 2.5 3.6 ± 1.7 3.7 ± 1.3

 With bacteria/without bacteria ratio 1.6 2.4 3.5

SW

 With bacteria 42.8 ± 2.1 47.1 ± 5.1 19.0 ± 3.6

 Without bacteria ND 16.8 ± 4.5 ND

 With bacteria/without bacteria ratio IC 2.8 IC
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Changes in the bacterial population in the cultures
Observations by SEM (Fig. 3) revealed that several bac-
terial species attached to the microalgal cells in the cul-
ture over 7  days. Although it was probable that not all 
of these bacteria were recovered, the free-living bacte-
ria in the microalgae–effluent culture and the bacteria 
attached onto microalgal cells were collected as above 
described in ‘Method’ section. The total number of bac-
terial 16S rRNA genes significantly increased (P < 0.05) 
in all the cultures over 7 days; by 148‒219, 109‒327, and 
333‒793-fold compared with the initial values in microal-
gae-MW1, -MW2, and -SW, respectively (Table 3). These 
results suggest that the three microalgae produced and 
supplied organic carbon into the phycosphere and bulk 
water that effectively supported bacterial growth [42, 43].

Bacterial community composition in the cultures
The bacterial communities in the effluent samples before 
and after 7  day of culture with each microalgal species 

were analyzed by comparison of the V4 region of the 
16S rRNA gene sequences (Table 4). The Shannon index 
and OTU count were lower in microalgae–effluent cul-
tures than in the original effluents, except for the OTU 
of C. vulgaris-MW2. This result suggests that microalgae 
exerted a selective pressure on the effluent bacterial com-
munities during the 7 days of culture.

We used PCoA to visualize the differences in the 
relative abundances of OTUs in each bacterial commu-
nity (Fig. 4). There were clear differences between the 
bacterial communities in each effluent before and after 
cultivation with each microalga. Interestingly, after 
the 7-day culture, the bacterial communities associ-
ated with each microalga were clustered closer to each 
other, even though the original effluents and micro-
algal species differed. The bacterial community com-
positions were further examined at both the phylum 
and class levels (Fig. 5). At the phylum level (Fig. 5a), 
the initial bacterial communities in MW1 and MW2 

Fig. 3  SEM images of bacteria attached to Chlorella vulgaris cells (A) and Euglena gracilis cells (B) cultured in MW1 with indigenous bacteria after 
7 days

Table 3  Quantification of bacterial 16S rRNA genes in initial effluent and 7-day cultures

Values are means ± SDs (n = 3)

MW1 municipal wastewater effluent sample 1, MW2 municipal wastewater effluent sample 2, SW swine wastewater effluent

Effluent sample 16S rRNA gene copy numbers (copies/mL), and their ratios in initial effluent and in 7-day cultures

Initial After cultivation with indicated microalgal species

Chlamydomonas 
reinhardtii

Chlorella vulgaris Euglena gracilis

MW1 effluent 4.2 ± 1.1 × 108 9.2 ± 2.5 × 1010 6.2 ± 3.6 × 1010 7.4 ± 1.7 × 1010

 7-day culture/initial ratio 219 148 176

MW2 effluent 2.2 ± 0.9 × 108 7.2 ± 2.9 × 1010 4.7 ± 1.9 × 1010 2.4 ± 1.1 × 1010

 7-day culture/initial ratio 327 214 109

SW effluent 8.7 ± 3.3 × 109 6.9 ± 5.2 × 1012 6.5 ± 3.1 × 1012 2.9 ± 1.5 × 1012

 7-day culture/initial ratio 793 747 333
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effluents were dominated by Proteobacteria (46.9 and 
56.6% of total phylum groups, respectively). Proteo-
bacteria (12.5%), Candidate division TM7 (31.5%), 
and Tenericutes (16.5%) were dominant in the SW 
effluent. In contrast, Proteobacteria (26.6–57.9%) and 
Bacteroidetes (35.3–68.4%) were dominant in the bac-
terial communities associated with microalgae after 

the 7-day culture. At the class level (Fig.  5b), Sphin-
gobacteriia (8.9–48.3%), Saprospirae (10.4–47.4%), 
Alphaproteobacteria (7.1–43.7%), and Betaproteobac-
teria (7.6–28.9%) were most abundant in the bacterial 
communities associated with all microalgal cultures. 
The relative abundances of these four bacterial classes 
in the cultures were clearly higher than in the initial 
effluents. In contrast, the relative abundances of Del-
taproteobacteria and Gammaproteobacteria tended to 
be lower in cultures than in the initial effluents.

Sphingobacteriia, Alphaproteobacteria, and Betapro-
teobacteria have been generally acknowledged to be the 
dominant bacterial members in phycospheres of marine 
microalgae [44], freshwater microalgae [45], wastewater-
based microalgal ponds [46–48], and photobioreactors 
[49]. In this study, the similar selection of Bacteroidetes 
(Sphingobacteriia and Saprospirae) and Proteobacte-
ria (Alphaproteobacteria and Betaproteobacteria) in all 
microalgae-effluent cultures of the three microalgal spe-
cies and three different effluents was observed after cul-
turing for only 7 days.

Hierarchically clustered heatmap analysis was used to 
identify the core bacterial groups at the family or genus 
level (Fig.  6). There were clear differences between bac-
terial communities before and after cultivation with each 
microalga. Sphingobacteriaceae, Cytophagaceae, Flu-
viicola, or Sediminibacterium within the Bacteroidetes 
phylum; Sphingomonadaceae, Rhizobiaceae, Caulobac-
teraceae, or Novosphingobium within the Alphaproteo-
bacteria phylum; and Alcaligenaceae, Rhodocyclaceae, 
Comamonadaceae, Hydrogenophaga, and Polynucleo-
bacter within the Betaproteobacteria phylum were the 
dominant family or genus members in the bacterial com-
munities associated with microalgae. These core mem-
bers of the bacterial communities may have strongly 
impacted the growth of the microalgae. Furthermore, 
except for the C. vulgaris-MW2 culture, the bacterial 
communities in the culture with each microalga were 
clearly divided into two distinctly different main clus-
ters: (i) C. reinhardtii and C. vulgaris cultures, and (ii) E. 
gracilis cultures. In addition, the core bacterial members 
in cultures depended on the combination of microalgal 
species and effluent. For example, the core bacteria in C. 
reinhardtii, C. vulgaris, and E. gracilis cultures grown in 
MW1 effluent differed from each other. These findings 
suggest that each microalgal species exerted selective 
pressure on the indigenous bacteria, and this pressure 
likely resulted from organic carbon metabolites unique 
to each microalgal species that effectively and selec-
tively supported bacterial growth [42, 50, 51]. C. rein-
hardtii and C. vulgaris are members of the Chlorophyta 
(green algae), whereas E. gracilis belongs to the Eugle-
nozoa. Organic carbon metabolites of C. reinhardtii and 

Table 4  Read number, number of  operational taxonomic 
units (OTUs), and Shannon index of bacterial communities 
in initial effluent and 7-day cultures

MW1 municipal wastewater effluent sample 1, MW2 municipal wastewater 
effluent sample 2, SW swine wastewater effluent, CR Chlamydomonas reinhardtii, 
CV Chlorella vulgaris, EG Euglena gracilis

Sample Filtered reads OTUs Shannon index

MW1 113,724 6932 9.15

 MW1-CR 100,924 4498 3.51

 MW1-CV 103,972 3599 3.98

 MW1-EG 119,590 5007 4.23

MW2 127,497 6354 8.09

 MW2-CR 106,184 4500 4.28

 MW2-CV 124,432 6558 4.85

 MW2-EG 109,082 4563 4.57

SW 88,950 6226 7.62

 SW-CR 123,023 4108 4.78

 SW-CV 117,494 4572 4.75

 SW-EG 256,138 4211 5.90

Fig. 4  Principal coordinate analysis (PCoA) of pairwise Bray–Curtis 
dissimilarity index between all samples. MW1 (white circle), municipal 
wastewater effluent 1; MW2 (black circle), municipal wastewater 
effluent 2; SW (white square), swine wastewater effluent; CR, 
Chlamydomonas reinhardtii; CV, Chlorella vulgaris; EG, Euglena gracilis 
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C. vulgaris might be similar to each other. This similar-
ity might be related to the relatively similar bacterial core 
members associated with C. reinhardtii and C. vulgaris.

A noteworthy new finding from this study was that 
promotion of the growth of the three microalgal species 
by the indigenous bacterial community was observed 

for all of the wastewater effluents. Although the possi-
bility cannot be denied that certain bacteria promoted 
the growth of all three microalgae, our results strongly 
suggest that within the bacterial community certain 
species promote the growth of their “host” microalgal 
species, and that each microalgal species recruit these 

Fig. 5  Bacterial community composition at the phylum (a) and class (b) levels. MW1 municipal wastewater effluent 1, MW2 municipal wastewater 
effluent 2, SW swine wastewater effluent, CR Chlamydomonas reinhardtii, CV Chlorella vulgaris, EG Euglena gracilis 
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species-specific MGPB from the bacterial community in 
the effluents. Further studies are needed to examine the 
species-specific interactions of bacteria and microalgae. 
Isolation and identification of the MGPB strains and clar-
ification of their microalgal growth-promoting functions 

are ongoing. Isolation of MGPB for each microalgal 
species from effluent cultures could lead to their use as 
“probiotics” to enhance microalgal growth effectively in 
effluent culture.

Fig. 6  Heatmap showing the most abundant family or genera in all samples. Heatmap was constructed from the Bray–Curtis dissimilarity matrix 
using genera (> 1% relative abundance). Cluster dendrograms are based on average linkage hierarchical clustering. MW1 municipal wastewater 
effluent 1, MW2 municipal wastewater effluent 2, SW swine wastewater effluent, CR Chlamydomonas reinhardtii, CV Chlorella vulgaris, EG Euglena 
gracilis 
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Conclusions
Indigenous bacterial communities in three different 
wastewater effluents—two from municipal wastewa-
ter and one from swine wastewater—significantly pro-
moted the growth of three microalgae, C. reinhardtii, 
C. vulgaris, and E. gracilis during 7-day cultures. The 
fact that similar growth promotion was observed for 
all combinations of the effluents and microalgal species 
supports the conclusion that MGPB are ubiquitously 
present in a wide variety of wastewater effluents. An 
important result of this study was the discovery that 
wastewater effluent can be used as a microalgal cul-
ture platform for highly efficient biomass production 
enabled by MGPB. This insight will provide a stimulus 
for microalgal biomass production using wastewater 
effluent.
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