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Recent advances in lignin valorization 
with bacterial cultures: microorganisms, 
metabolic pathways, and bio‑products
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Abstract 

Lignin is the most abundant aromatic substrate on Earth and its valorization technologies are still under developed. 
Depolymerization and fragmentation are the predominant preparatory strategies for valorization of lignin to chemi-
cals and fuels. However, due to the structural heterogeneity of lignin, depolymerization and fragmentation typically 
result in diverse product species, which require extensive separation and purification procedures to obtain target 
products. For lignin valorization, bacterial-based systems have attracted increasing attention because of their diverse 
metabolisms, which can be used to funnel multiple lignin-based compounds into specific target products. Here, 
recent advances in lignin valorization using bacteria are critically reviewed, including lignin-degrading bacteria that 
are able to degrade lignin and use lignin-associated aromatics, various associated metabolic pathways, and applica-
tion of bacterial cultures for lignin valorization. This review will provide insight into the recent breakthroughs and 
future trends of lignin valorization based on bacterial systems.
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Background
Lignocellulose as the largest sustainable reservoir of 
organic material could be used to substitute for petro-
leum-based fuels and chemicals. Among the major com-
ponents of lignocellulose, cellulose and hemicellulose 
have been converted to various chemicals and biofu-
els efficiently through biochemical route [1]. However, 
intense efforts are still needed to develop technologies to 
valorize lignin. Lignin, as a three-dimensional amorphous 
polymer, is composed of three different phenylpropane 
units: guaiacyl alcohol (G-type unit), p-coumaryl alcohol 
(H-type unit) and syringyl alcohol (S-type unit), which 
are linked mainly by aryl ether (β-O-4), phenylcoumaran 
(β-5), resinol (β–β), biphenyl ether (5-O-4), and diben-
zodioxocin (5–5/β-O-4) [2, 3] (Fig.  1). Although lignin 

accounts for approximate 15%–40% of lignocellulose, it 
is the most underutilized fraction of lignocellulose [4, 5].

As mentioned by Nguyen et al. the second-generation 
biofuels began to be commercialized in 2015 and 67 facil-
ities were operated throughout the world in 2017, with 
more than 1/3 of these operating at commercial scale 
[6]. In September 2017, fifteen ministries in China jointly 
issued an announcement to promote ethanol production 
for gasoline blending. The announcement stated that the 
large-scale production of cellulosic ethanol should be 
achieved in 2025. This suggests the continued growth in 
global cellulosic ethanol production. In cellulosic ethanol 
production process, hexose and pentose are fermented to 
ethanol, leaving most lignin in the solid residue. When 
1.0  L cellulosic ethanol is produced, about 1.0  kg lignin 
will be generated as byproducts. Moreover, the global 
pulp/paper industry would also generate about 50 mil-
lion tons of lignin annually. Although lignin is generated 
in large amount, valorization of lignin is still a great chal-
lenge due to its inherent structural heterogeneity [7, 8]. 
Currently, most lignin is mainly burned for energy supply 
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or discarded into the environment. The life cycle assess-
ment model indicated that valorizing partial lignin to 
target chemicals may be more environmentally beneficial 
than burning for energy supply only [9]. To make use of 
lignin more effectively, lignin valorization technologies 
are urgently desired.

With the aforementioned information, it is of great 
interest and challenge to realize the valorization of lignin. 
Although the structure of lignin is more complex com-
pared with that of cellulose and hemicellulose, the high 
carbon/oxygen ratio and the abundant reserves of aro-
matic skeletal in lignin render it a promising feedstock 
for chemicals and fuels [10]. The predominant strategies 
for valorization of lignin to chemicals and fuels are depo-
lymerization and fragmentation (ring scission), including 
reduction to modify lignin, supercritical fluids to modify 
lignin, ionic liquids to modify lignin, and fractionation 
by ultrafiltration and selective precipitation [10–13]. 
However, the structural heterogeneity of lignin generally 
results in diverse product species, which requires exten-
sive separation and purification procedures [13–15].

Biological treatment is another choice for lignin val-
orization. In previous studies, the main biological treat-
ment studies focused on wood-rotting basidiomycetes. 
Even though the investigation of lignin biodegradation by 
fungi has been carried out for decades and several pro-
gresses have been made, there are few commercial pro-
cesses using fungi for lignin valorization.

Recently, bacterial systems have attracted an increas-
ing attention on lignin valorization because of their 
inherent “biological funneling” processes, which can 
funnel multiple aromatic streams into a uniform com-
pound [16]. Thus, the challenges associated with lignin 
heterogeneity can potentially be overcome. To summa-
rize the current breakthroughs and discuss future trends 

of lignin valorization with bacterial systems, here the 
recent advances in lignin valorization with bacterial sys-
tems were reviewed and discussed, including the lignin-
degrading bacteria and their screening methods, the 
lignin degradation pathways in bacteria, and the related 
bio-products produced from lignin components.

The lignin‑degrading bacteria and their screening 
methods
Discovery of bacteria with strong lignin degradation 
capability and characterization of related enzymes have 
significant benefits for lignin valorization. Sample source 
is a key factor for discovering lignin-degrading bacteria 
with excellent performance. The lignin-degrading bacte-
ria are generally abundant in natural or manmade lignin-
rich environments, such as leaf litter, sludge of pulp 
paper mill, compost soils, decomposing woods, and acti-
vated sludge. Some unusual samples also contain various 
lignin-degrading bacteria. For example, several lignin-
degrading bacteria were separated from the steeping 
fluid of eroded bamboo slips, which were unearthed from 
the ancient tomb of more than 1700  years ago [17–19]. 
Wood-eating termites play an important role in natu-
ral carbon cycle and most lignocellulosic materials are 
digested in termite hindgut [20]. Thus, the termite gut 
is a rich source for the isolation of lignin-degrading bac-
teria and some bacteria responsible for lignin degrada-
tion were isolated successfully [21, 22]. In addition, some 
endophytes can decompose plant residues rapidly when 
the plants die due to its lignocellulose degradation abil-
ity, and endophytic bacteria were also isolated for lignin 
degradation [23].

In addition to sample sources, the screening method 
is another key factor for obtaining lignin-degrading 
bacteria with excellent performance. The commonly 

Species G H S

Poplar (hardwood) 37.8% 0.3% 61.9%

Pine (softwood) 98.3% 1.7% 0

Corn (monocotyledon) 38.3% 2.8% 58.9%

Arabidopsis (dicotyledon) 77.1% 2.8% 20.1%
Fig. 1  The basic structure and compositions of lignin units in different species. The lignin unit compositions mentioned here were quantified by 
2D nuclear magnetic resonance technology [58]. H-lignin here may contain some residual 4-vinyl-phenol that comes from p-coumaric acid, which 
should not be included in “lignin”
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used method is enriching isolates by inoculating sample 
sources into mineral salts medium supplemented with 
lignin, synthetic lignin, or lignin-based aromatics as the 
sole carbon source [23–28]. In this case, the bacteria that 
cannot break down lignin and utilize lignin fragments for 
cell growth would be weeded out and lignin-degrading 
bacteria can be isolated. For instance, guaiacylglycerol-
β-guaiacyl ether, a popular lignin model compound 
containing β-O-4 bonds, was applied to screen lignin 
degraders as β-O-4 linkages are the most abundant bonds 
in lignin [22, 29]. To inhibit the false positives caused by 
lignin degradation fungi, cycloheximide was commonly 
added into the selection medium [24, 30]. Even though 
the application of lignin and lignin-mimicked com-
pounds can generally discover amounts of lignin-degrad-
ing bacteria, it cannot distinguish the lignin degradation 
abilities among the screened strains. Thus, it often entails 
a secondary screening. Due to the structural similarity 
between lignin fragments and some dyes, bacteria that 
can decolorize/degrade dyes generally have the capabil-
ity to degrade lignin. Thus, the decoloration could serve 
as an index to determine the capabilities of lignin deg-
radation. The commonly used dyes for lignin-degrading 
bacteria screening include Azure B, Toluidene Blue O, 
Methylene Blue, Malachite Green, Remazol Brilliant Blue 
R, indulin AT, etc. [21, 26, 28, 31–33].

For efficient screening of bacteria with exceptional 
lignin degradation capability, two high-throughput strat-
egies were designed recently. In one case, target strains 
were screened based on their 2,2′-azino-bis(3-ethylben-
zothiazoline-6-sulfonic acid) (ABTS) oxidizing activity. 
As well known, laccase belongs to ligninolytic enzyme 
system and most lignin-degrading bacteria can secrete 
laccase. ABTS can produce a green radical cation on 
oxidation by laccase, which has a strong absorption at 
420 nm. Thus, when the culture broth of candidate bac-
teria was mixed with ABTS solution, the laccase-produc-
ing strains can be easily distinguished [29]. In another 
case, Chong and co-workers screened lignin degradation 
microbes based on the sensitive prussian blue spectro-
photometric method [34]. When K3Fe(CN)6 and FeCl3 
are mixed with phenolic hydroxyl groups, prussian blue 
is formed because of the redox reaction. By determining 
the absorbance of formed prussian blue at 710  nm, the 
lignin content in culture broth can be calculated [35, 36]. 
The culture broth with low lignin suggests the presence 
of bacteria with exceptional lignin degradation capabil-
ity. The ABTS and prussian blue-based methods can be 
supervised with a spectrophotometric instrument; thus, 
it can be convenient to realize the high-throughput 
screening for lignin-degrading bacteria.

Based on the methods mentioned above, a considerable 
amount of lignin-degrading bacteria have been isolated. 

These bacteria mainly belong to phyla Proteobacteria, Act-
inobacteria, and Firmicutes. Recent study demonstrated 
that archaeal phylum Bathyarchaeota members also play 
an important role in lignin degradation [37]. The detailed 
information of the recently discovered lignin-degrading 
bacteria and typical lignin-degrading bacteria is shown in 
Table 1. More genotype and phenotype information associ-
ated with lignin-degrading bacteria can be found in the lit-
erature [38, 39]. With further researches, inherent enzymes 
and metabolic pathways involved in lignin degradation by 
these bacteria have been characterized, including enzymes/
pathways catalyzing oxidative and hydroxylation reactions, 
depolymerizing phenolic and non-phenolic lignin poly-
mers, demethylation reactions and opening the aromatic 
rings of lignin-based compounds [33, 40–45]. Now, some 
of these bacteria have been used in treatment of sewages 
from pulp and paper industry, degradation heterogeneous 
compounds, and pretreatment of lignocellulosic biomass 
[46–49]. In particular, among these isolates, some strains 
(e.g., Pseudomonas putida KT2440, Sphingobium sp. SYK-
6, and Rhodococcus opacus PD630) have already been 
applied as typical cells for producing value-added products 
from lignin and mining new lignin-degrading enzymes. 
The detailed information will be elaborated in the following 
texts.

Degradation pathways of lignin‑based aromatics 
in bacteria
As mentioned above, bacteria have evolved multiple 
metabolic pathways to decompose lignin and assimilate 
its aromatic building blocks, and these sophisticated 
metabolic pathways are essential for lignin degrada-
tion. With the development of multi-omics technology, 
lignin-related metabolic pathways are becoming more 
accessible [40, 44, 45, 50]. Similar to fungi, some bac-
teria depolymerize lignin using multifarious enzymes, 
such as laccases, manganese peroxidases, dye-decolor-
izing peroxidases, cytochrome P450s, non-heme iron 
enzymes, dioxygenase, superoxide dismutases, and 
β-etherase enzymes. These lignin-degrading enzymes 
have been summarized in some excellent reviews 
[51–55]. Similarities and differences between bacteria 
and fungi in lignin depolymerization mechanism were 
described comprehensively in the above reviews. Even 
though the lignin depolymerization capability of bacte-
ria is less than that of some famous lignin-degradation 
fungi [56], some of these bacteria can utilize the depo-
lymerized lignin (lignin monomers, dimers and other 
low-molecular weight aromatic compounds) efficiently. 
It was hypothesized that lignin decomposition in nature 
is mainly initiated with fungi, which excrete power-
ful extracellular enzymes for lignin depolymerization. 
When lignin is depolymerized to monomers and/or 
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low-molecular weight aromatics, bacteria assimilate 
them for carbon and energy through their well-adapted 
metabolic pathways [57]. This section focuses on the 
bacterial metabolic versatility for the assimilation of 
lignin-related low-molecular weight aromatics (Fig. 2).

The degradation of G‑lignin‑based compounds (e.g., ferulic 
acid)
The G-lignin unit accounts for 37.8%, 98.3%, 38.3%, and 
77.1% of the lignin in poplar (a typical hardwood) wood, 

pine (a typical softwood) wood, corn (a typical mono-
cotyledon) stover, and Arabidopsis (a typical dicotyle-
don) inflorescence stem, respectively [58]. Ferulic acid is 
a standard model compound for G-lignin. Structurally, 
it is covalently linked to C-5 of the l-arabinofuranosyl 
residue which is attached to the xylan backbone and 
acts as an anchor of lignification in herbaceous biomass 
[59, 60]. As mentioned in “The lignin-degrading bacte-
ria and their screening methods”, there are some bacte-
ria that can degrade ferulic acid and utilize it as the sole 

Fig. 2  The scheme of degradation pathways for lignin-based aromatics (adapted from [4, 73, 95, 138, 139])
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carbon source for cell growth. The degradation pathway 
of ferulic acid can be divided into four categories: non-
oxidative decarboxylation pathway [61, 62], coenzyme 
A (CoA)-dependent non-β-oxidation pathway [63–66], 
CoA-dependent β-oxidation pathway [66, 67], and side 
chain reduction pathway [68]. Even though involved with 
different intermediates and enzymes, these four pathways 
are all funneled into vanillic acid for further degradation. 
Moreover, some other lignin-based aromatics were also 
degraded through these pathways, such as vanillin, vanil-
lic acid, and dihydroferulic acid (Fig. 2). In other words, 
these lignin intermediate products, if present in hydro-
lysates, can also be assimilated by these pathways.

The degradation of p‑coumaric acid
The H-lignin unit accounts for 0.3%, 1.7%, 2.8%, and 2.8% 
of the lignin in poplar wood, pine wood, corn stover, and 
Arabidopsis inflorescence stem, respectively [58]. It dif-
fers from G- and S-lignin units; there are no methoxy 
groups at the 3′ or 5′ positions of phenylpropane units. 
p-Courmaric acid and some other hydroxycinnamic 
acid have been commonly utilized to represent H-lignin 
units. Structurally, some p-coumaric acid is linked to 
the hemicellulose with ester linkages in herbaceous bio-
mass, which can be released together with ferulic acid 
under alkaline hydrolysis conditions [59, 60, 69]. Gen-
erally, the degradation pathways of p-coumaric acid 
in bacteria can be divided into three categories: CoA-
dependent β-oxidation pathway [70, 71], CoA-dependent 
non-β-oxidation pathway [64, 69, 72], and CoA-inde-
pendent pathway [4, 73]. Ultimately, all these three path-
ways converge at the intermediate of p-hydroxybenzoic 
acid, which is then converted to protocatechuic acid by 
p-hydroxybenzoate-3-hydroxylase for further metabo-
lism (Fig. 2).

The degradation of S‑lignin‑based compounds (e.g., 
syringic acid)
The S-lignin unit accounts for 61.9%, 0, 58.9%, and 20.1% 
of the lignin in poplar wood, pine wood, corn stover, and 
Arabidopsis inflorescence stem, respectively [58]. There 
are two methoxy groups on the aromatic ring of S-lignin, 
in contrast to one and zero methoxy group on that of G-, 
and H-lignin, respectively, which make the degradation 
of S-lignin more difficult than that of G-, and H-lignin. 
Syringic acid is considered to be a model compound of 
S-lignin. Compared with ferulic acid and p-coumaric 
acid, there are fewer studies on microbes that can effi-
ciently degrade syringic acid, which indicates the adverse 
effects of aromatic methoxy on S-lignin catabolism. The 
knowledge of bacterial S-lignin degradation pathway 

is mainly derived from Sphingomonas sp. SYK-6, which 
was isolated as a 5,5′-dehydrodivanillate degrader in 1987 
[74]. Now, it is one of the most widely used bacteria for 
lignin degradation study.

In Sphingomonas sp. SYK-6 strain, syringic acid is 
first O-demethylated to 3-O-methylgallate (3MGA) by 
a tetrahydrofolate-dependent O-demethylase (DesA). 
Subsequently, there are three pathways for 3MGA degra-
dation: gallic acid (GA) as an intermediate [75, 76], 4-car-
boxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate as 
an intermediate [77, 78], 3MGA is directly integrated 
into protocatechuic acid 4,5-cleavage pathway [78, 79]. 
With the aforementioned three pathways, syringic acid 
is assimilated into the protocatechuic acid 4,5-cleavage 
pathway and ultimately integrated to the tricarboxylic 
acid (TCA) cycle (Fig. 2).

The degradation of protocatechuic acid and catechol
Protocatechuic acid and catechol are widely distributed 
in various lignin hydrolysates and they are also two key 
branch points in bacterial lignin degradation pathways 
(Fig. 2). From the above discussion, both G- and H-lignin 
components are metabolized using protocatechuic acid 
as intermediate and S-lignin components are degraded 
through the protocatechuic acid 4,5-cleavage pathway. 
The degradation of protocatechuic acid in microbes has 
been classified into three categories: 3,4-cleavage path-
way [80, 81], 4,5-cleavage pathway [82–84], and 2,3-cleav-
age pathway [85, 86]. Some other lignin-based aromatics 
(e.g., phenol, benzene, benzoate, toluene, naphthalene, 
etc.) could be funneled into catechol for further degrada-
tion. The degradation of catechol is mainly catalyzed by 
dioxygenases through ortho- or meta-cleavage pathway 
[87–92]. In nature, the ortho-cleavage pathway and meta-
cleavage pathway of catechol are not exclusive to each 
other; they can co-exist in a bacterium. However, they 
may be induced differently by different carbon sources. 
For example, when grown on salicylic acid, only the cat-
echol ortho-pathway is induced in P. cepacia. In contrast, 
when grown on benzoate, the ortho- and meta-pathways 
could be induced simultaneously for catechol degrada-
tion [93].

To summarize, bacteria have evolved a wide variety 
of distinct pathways to metabolize lignin-based com-
pounds. The biochemical richness in bacteria provides 
great opportunities for pathway engineering for over-
production of valuable intermediates. For example, the 
metabolisms of some G- and H-lignin compositions 
share protocatechuic acid as a common intermediate. 
Thus, these compounds can be funneled to various target 
products through protocatechuic acid.
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Application of multiple metabolic pathways 
for lignin valorization
Traditionally research on processing lignocellulose to 
biofuels and chemicals has focused on the carbohydrate 
fractions. However, as hexose and pentose fermentation 
technologies near maturation, it is becoming increasingly 
apparent that it is desirable to develop useful strategies to 
make use of considerable amount of residual lignin. How-
ever, the lignin components in fermentation streams are 
heterogeneous, containing organic acids, fermentation 
intermediates, and residual enzymes (e.g., cellulases) in 
addition to the targeted lignin-based compounds, which 
hinder its application in many fields (e.g., nanomaterials, 
fine chemicals). Biological conversion is a commendable 
supplement for the thermo-chemical lignin valorization 
route because some bacteria can funnel lignin fragments 
and other fermentation residuals into target chemicals 
[5, 11, 51, 94, 95]. Actually, several wild lignin-degrading 
bacteria possess lipid or polyhydroxyalkanoates (PHA) 
synthesis capability. Moreover, engineered bacteria with 
pyruvate, lactate, pyrogallol, and vanillin synthesis capa-
bility have also been constructed to utilize lignin and its 
fragments as substrates. All these examples demonstrate 
that it is technically feasible to convert lignin-enriched 
streams to value-added products with bacteria. In this 
section, recent advances in lignin conversion to bio-
products are presented.

Application of lignin degradation pathways for lipid 
production
Lipids are attractive feedstocks for production of biofuels. 
Generally, oleaginous organisms can accumulate > 20% 
of their dry cell weight (DCW) as lipids. In recent years, 
researchers found that some oleaginous microbes can 
synthesize lipid from lignin-based aromatics and Rhodoc-
occus is such a promising species among these microbes, 
because of its robust growth, tolerance to various aro-
matics, broad substrate specificity, as well as robust lipid 
production capability [96, 97]. As mentioned in the “Deg-
radation pathways of lignin-based aromatics in bacteria”, 
Rhodococcus bacteria can metabolize various lignin-
based aromatics. These lignin-based aromatics undergo 
ring cleavage and are converted to acetyl-CoA, which is 
an essential precursor for lipid biosynthesis. For example, 
when p-hydroxybenzoic acid or vanillic acid was applied 
as the sole carbon source, both R. opacus PD630 and R. 
opacus DSM 1069 can survive well on these two lignin 
model monomers and accumulate approximately 20% of 
DCW as lipids under nitrogen limiting conditions [98]. 
Further studies demonstrate that blending lignin-based 
aromatics with glucose increased lipid contents consider-
ably [99].

Compared with model aromatics, the actual residual 
lignin from biorefinery processes is of more interest-
ing. Kosa and his co-workers validated the feasibility of 
lignin-to-lipid conversion with R. opacus, even though 
with limited lipid content and low lipid titer [100, 101] 
(Table 2). Monitoring lignin fractions during the fermen-
tation process showed that the low-molecular weight 
lignin fractions were digested successfully, leaving the 
more recalcitrant lignin-based polymers undigested. 
It was suggested that these bacteria were not good at 
depolymerizing lignin, but can assimilate low-molecular 
weight lignin fractions efficiently. Thus, it was hypothe-
sized that modifying lignin properties, such as decreasing 
the molecular weight and destructing obstinate chemi-
cal bonds, would be helpful for lipid accumulation with 
better efficiency. Thus, chemical lignin depolymerization 
methods and biological depolymerization methods were 
integrated with bacterial cultures for lipid production 
from lignin [35, 102]. In these ways, lignin was depo-
lymerized first and then the depolymerized lignin can be 
utilized more efficiently by related bacteria. Moreover, 
bacteria co-culture systems were also applied for lipid 
production from lignin under the consideration that dif-
ferent bacteria can be complementary to each other on 
lignin depolymerization and assimilation [103].

In addition to lignin residuals, aqueous wastes con-
taining lignin-based aromatics can be also applied for 
lipid production with bacteria. A large amount of waste 
effluent could be generated during the pretreatment pro-
cess of lignocellulose, which contains different fractions 
based on the pretreatment method. For example, alkali 
pretreatment processing would generate waste effluent 
that contains lignin, aromatic monomers, oligosaccha-
rides, acetate, and other carbohydrates, which can be uti-
lized by some lipid producing microorganisms [16, 103]. 
Thus, the co-production of bioethanol and lipid in an 
integrated biorefinery route was realized aimed at mak-
ing use of all lignocellulose composition [104]. Thermo-
chemical process is another choice for the conversion 
of lignocellulosic biomass to liquid fuels in addition to 
the biochemical process. In hydrothermal liquefaction 
processes, biomass is pyrolyzed to decompose the solid 
polymeric structure into a mixture of gas, biocrude, 
solid residue, and aqueous waste. Generally, this aque-
ous waste contains high concentrations of organic acids, 
alcohols, ketones, ammonia and lignin-based aromat-
ics, which can be converted into lipids by some bacteria, 
along with the reduction of chemical oxygen demand 
(COD) [105]. Biomass gasification is another thermo-
chemical process where biomass is converted to synthetic 
gas at a higher temperature. During the biomass gasifi-
cation process, a large amount of wastewater is gener-
ated when the synthetic gas is scrubbed and it contains 
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abundant lignin fractions. Using the biomass gasifica-
tion wastewater with mineral salts as substrate, R. opa-
cus DSM 43,205 can accumulate 62.8% g lipid/g DCW 
with a wastewater COD removal efficiency of 74% [106]. 
These two examples both indicated the prospect of bio-
conversion of underutilized aromatics in waste water 
from biorefinery process into useful products by selected 
bacteria.

Application of lignin degradation pathways for PHA 
production
PHA is a group of biopolyesters synthesized as energy 
reserve inside cells and can be produced by variety of 
microbes under nutrient imbalance conditions. In the 
last three decades, PHA as biodegradable plastics has 
attracted wide attention not only because they have com-
patible material performance but also because they could 
be produced from renewable carbon sources, even from 

inferior biomass constituents [107]. As mentioned in 
“Application of lignin degradation pathways for lipid pro-
duction”, lignin derivatives can be metabolized to acetyl-
CoA, a precursor for lipid, as well as for PHA synthesis. 
PHA and lipid are all intracellular compounds, which can 
be separated from lignin streams just by centrifugation. 
Thus, it is a simpler process to convert lignin to PHA and 
lipid compared with pyrolyzing lignin to various chemi-
cals which requires extensive separation and purification 
procedures.

There are various bacteria capable of producing PHA 
from lignin-based aromatics [16, 50, 108–111]. In addi-
tion to aromatic monomers, some actual lignin streams 
can also be utilized for PHA biosynthesis [112, 113] 
(Table  3). Just like lipid production from lignin-based 
streams, the PHA production from lignin streams by 
bacterial cultures is also generally concurrent with the 
reduction of the liquor color and COD [108, 114]. The 

Table 2  Lipid production from lignin degradation pathways by bacteria

–, not mentioned in the paper

Products Substrates Strains Main Strategies Titers References

Lipid 4-Hydroxybenzoic acid, vanil-
lic acid and glucose as the 
co-substrates

Rhodococcus rhodochrous 
ATCC 21198

Use lignin model monomer 
and glucose as co-sub-
strates for lipid production

> 40% of DCW [99]

Ultrasonicated ethanol orga-
nosolv lignin

R. opacus DSM 1069 Integrate R. opacus-based 
assimilation process and 
ultrasonication-based lignin 
pretreatment process

4.08% of DCW [101]

O2 pretreated kraft lignin R. opacus DSM 1069 Integrate R. opacus-based 
assimilation process and 
O2-based lignin pretreat-
ment process

14.21% of DCW, 0.067 mg/mL [102]

Kraft lignin R. opacus PD630 Integrate R. opacus-based 
assimilation process and 
laccase-based lignin depo-
lymerization process

About 150 mg/L [35]

Alkali-extracted lignin R. opacus PD630 and R. jostii 
RHA1 VanA−

Co-culture of R. opacus and R. 
jostii RHA1

0.39 g lipid/g DCW [103]

Algal hydrothermal liquefac-
tion aqueous wastes

R. opacus PD630, R. jostii 
RHA1, and VanA−

Co-culture of R. opacus and R. 
jostii RHA1

0.46 g lipid/g DCW [105]

Biomass gasification waste-
water

R. opacus DSM 43205 Supply wastewater with 
some mineral salt for bet-
ter cell growth and lipid 
production

62.8% of DCW [106]

Effluent generated from a 
two-stage pretreatment 
of NaOH pre-extraction 
and alkaline H2O2 post-
treatment.

R. opacus PD630 Integrate R. opacus-based 
assimilation process and 
alkali/alkali-peroxide-based 
pretreatment

1.3 g/L and 42.1% of DCW [104]

Ammonia fiber expansion 
corn stover lignin

R. opacus NRRL B-3311 Apply ammonia fiber expan-
sion corn stover lignin 
without pretreatment for 
lipid production

32 mg/L [151]

Lignin from combinatorial 
pretreatment

R. opacus PD630 Consolidate combinato-
rial pretreatment, laccase 
addition and fed-batch 
fermentation processes

1.83 g/L [152]
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PHA yield is relatively low when lignin residuals gener-
ated from traditional biorefinery process was used as 
substrates. As present in Table 3, only a milligram level of 
PHA was obtained when related bacteria were cultured in 
traditional lignin steams, such as kraft lignin and alkali-
extracted lignin. Additional depolymerization steps can 
contribute to a better PHA production. Liu and co-work-
ers applied lignin from an H2SO4 and NaOH combined 
pretreatment process as substrate for PHA production, 
and 1.0  g/L PHA was achieved. Further study indicated 
that this combined pretreatment process facilitated more 
lignin components accessible to PHA biosynthesis by 
increasing the contents of G- and H-lignin, reducing the 
β–β and β-O-4 bonds, and fractionating more aromatic 
monomers [115]. Besides integration of exogenous lignin 
depolymerization processes, enhancing the autologous 
lignin utilization capability of related bacteria is another 
choice for improving the lignin valorization efficiency. 
In this consideration, Lin and co-workers attempted to 
integrate three functional modules of lignin utilization 
in a wild P. putida strain, including the dye-decoloriz-
ing peroxidases-based lignin depolymerization system, 
the β-ketoadipate pathway-based aromatic compound 
catabolism system, and the PHA polymerase-based PHA 
synthesis system. As a result, this consolidated P. putida 

led to a sixfold increase of PHA titer [116]. To enable a 
broader slate of the produced PHA, the lignin valoriza-
tion route was lengthened by consolidating the PHA pro-
duction with a chemical catalysis. First, lignin stream or 
pretreated lignocellulosic liquor was converted to PHA 
by related microorganisms. Subsequently, the produced 
PHA was catalytically converted to alkenoic acids and 
hydrocarbons, which are precursors of diverse chemicals 
[16]. In this way, lignin can be transformed into biomate-
rials, chemical precursors and fuel-range hydrocarbons.

Application of lignin metabolic pathways for cis, 
cis‑muconic acid production
The compound cis, cis-muconic acid (cis, cis-MA) 
attracts large amount of attention recently because it can 
be applied as an intermediate for adipic acid production, 
which is a bulk feedstock of fibers and plastics. There is a 
reported market greater than $22 billion for cis, cis-MA 
globally [117]. Currently, the industrial production of 
cis, cis-MA depends mainly on chemical synthesis using 
petroleum-based feedstocks. Compared with the wide-
spread challenges of petrochemical processes, cis, cis-MA 
from renewable biomass provides a feasible alternative to 
alleviate the concerns of environmental issues and finite 
fossil resources. As presented in Fig. 2, cis, cis-MA is an 

Table 3  PHA production from lignin degradation pathways by bacteria

–, not mentioned in the paper

Products Substrates Strains Main strategies Titers Yields References

PHA Thermo-chemical wastewater 
streams

Engineered P. putida KT2440 Construct a strain with high 
tolerance to highly toxic 
substrates

– – [153]

Lignin from a combined 
pretreatment strategy

Engineered P. putida KT2440 Perform a fed-batch fermen-
tation and use lignin from 
a combined pretreatment 
strategy as substrate

1.0 g/L 17.6% mol/mol [115]

Kraft lignin Pandoraea sp. ISTKB Apply a nitrogen-limited 
culture condition

18 mg/L – [108]

Kraft lignin Cupriavidus basilensis B-8 Perform a fed-batch fermen-
tation

319.4 mg/L – [114]

Insoluble kraft lignin Engineered P. putida A514 Strengthen three functional 
modules of lignin depolym-
erization system, aromatic 
compound catabolism 
system, and PHA synthesis 
system

75 mg/L [116]

Alkaline pretreated liquor P. putida KT2440 Apply alkaline pretreated liq-
uor directly without dilution

0.252 g/L – [16]

Lignin Oceanimonas doudoroffii Perform a two-phase culture: 
the pre-culture with marine 
broth medium and the 
PHA production stage with 
mineral salt medium added 
lignin and lignin derivatives

0.2% of DCW – [154]

benzoic acid P. putida KT2440 Apply a nitrogen-limited 
culture condition

37.3% of DCW [155]
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intermediate of the β-ketoadipate pathway. Compared 
with lipid and PHA, cis, cis-MA is situated well before 
aromatics entering central carbon metabolism, which 
indicates that additional metabolic steps are not needed 
to divert aromatic carbons for cell growth and energy 
supply, and thus allows for a better atom efficiency.

As illustrated in Fig. 2, several aromatic-utilizing bac-
teria can employ catechol 1,2-dioxygenase to convert 
catechol to cis, cis-MA; however, cis, cis-MA is a meta-
bolic intermediate and not accumulated by native strains. 
When cis, cis-MA degradation pathway was blocked, 
the recombinant strains can accumulate cis, cis-MA and 
secrete it into the culture broth. In native strains, phe-
nol, benzene, benzoate, toluene, cinnamic acid and some 
other compounds, which wildly exist in lignin hydro-
lysate, can be funneled to cis, cis-MA through catechol. 
However, some other important components of lignin, 
such as p-coumaric acid, ferulic acid, and vanillin, were 
degraded using protocatechuic acid as a key interme-
diate, instead of catechol. Thus, these components of 
lignin cannot be converted to cis, cis-MA with the native 
metabolic pathways. To capture aromatics metabolized 
through protocatechuic acid degradation branch, Var-
don and co-workers bridged the protocatechuic acid and 
catechol branches, along with blocking further metabo-
lism of protocatechuic acid. Then, the modified strain 
was sequentially engineered to broaden its substrate 
spectrum (e.g., benzoate and phenol). Ultimately, the 
engineered strain could funnel multiple lignin-based 
aromatics and actual lignin steams to cis, cis-MA with 
a high efficiency [118] (Table  4). It is well known that 
almost all metabolic pathways are involved with multi-
ple regulators as well as versatile key enzymes. The cis, 
cis-MA production pathway is no exception. The cis, cis-
MA production capability was further improved by the 
co-expression of two genetically associated proteins of 
protocatechuic acid decarboxylase, and the deletion of 
the carbon catabolite repression control proteins [119, 
120]. Recently, the titer, yield and productivity of MA 
from recombinant P. putida were constantly improved 
with a combination of gene overexpression, removal of 
global catabolic regulator, constant fed-batch and high-
pH feeding strategy. As a result, as much as 50 g/L MA 
was produced from p-coumaric acid and 3.7 g/L cis, cis-
MA was produced from base-catalyzed depolymerized 
lignin [121]. Although cis, cis-MA is secreted into the 
lignin streams during fermentation process compared 
with lipid and PHA, its structure of dicarboxylic acid is 
different to lignin-based aromatics. Thus, it can be also 
separated efficiently from lignin-based solutions. Based 
on the high cis, cis-MA titer, a separation and purification 
scheme consisting of protein removal process, active car-
bon cleanup process, crystallization process, and ethanol 

purification process was applied to achieve high purity 
cis, cis-MA (99.8%) [122]. The practical feasibility of the 
entire route from lignin to nylon-6,6 was demonstrated 
with the procedures of depolymerization of lignin, fed-
batch fermentation process, recovery and purification of 
cis, cis-MA, catalytic hydrogenation, and polymerization 
of adipic acid to nylon 6,6 [123].

In addition to P. putida, other bacteria were also 
found to produce cis, cis-MA from lignin-based aro-
matics. Amycolatopsis sp. ATCC 39,116 with a deletion 
of two cis, cis-muconate cycloisomerases could accu-
mulate 3.1 g/L cis, cis-MA from guaiacol with a yield of 
96%, and 255.8  mg/L cis, cis-MA from softwood lignin 
hydrolysate [124]. In a very recently reported achieve-
ment, Corynebacterium glutamicum was also applied 
in cis, cis-MA production due to its robust tolerance to 
lignin-based aromatics. The recombinant C. glutamicum 
can produce 85 g/L and 1.8 g/L cis, cis-MA from catechol 
and lignin hydrolysate, respectively [125]. In the above 
studies, additional glucose or organic acid was needed 
for cell growth. Sonoki et al. constructed an engineered 
strain to utilize S-lignin derivatives for cell growth and 
G-lignin derivatives for cis, cis-MA production. This way, 
hardwood lignin which contained abundant G-lignin and 
S-lignin components could be utilized comprehensively 
for cis, cis-MA production without additional glucose 
[126]. As one of the most famous historic commercial 
microorganisms, E. coli was also applied for utilizing 
lignin-based aromatics because of its fast growth, unam-
biguous genetic background, and readily available genetic 
tools [127–129]. With different gene expression strate-
gies, 100–314 mg/L cis, cis-MA were produced from van-
illin [117].

Application of lignin degradation pathways for aromatics
Since the European and US food legislations permitted 
the word “natural” to be used for products derived from 
biological sources, “natural” compounds have been con-
sidered superior and are more expensive than synthetic 
ones. Therefore, there is a growing interest in produc-
ing natural aromatics due to their wide applications. The 
unique aromatic structure and the reproducible charac-
teristics of lignin make it an ideal feedstock for natural 
aromatics. However, vanillin, p-hydroxybenzoic acid, 
and pyrogallol are the only aromatics that have been pro-
duced from lignin through biological methods.

Vanillin is the main organoleptic ingredient of the 
vanilla pod and is widely applied by food, cosmetics, 
pharmaceutical, and other industries. Because of the lim-
ited supply and high price of natural vanillin, the current 
global demand for vanillin is mainly provided by chemi-
cal conversion of petrochemicals and thermo-chemical-
mediated lignin degradation process [130]. Nowadays, 
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Table 4  cis, cis-MA production from lignin degradation pathways by bacteria

Products Substrates Strains Main strategies Titers Yields References

cis, cis-MA Catechol C. glutamicum MA-2 Delete catB gene; express catA 
gene; apply a fed-batch 
fermentation process

85 g/L 100% mol/mol [125]

p-Coumaric acid P. putida KT2440-CJ103 Express aroY gene; delete 
pcaHG and catB genes; 
apply dissolved oxygen 
static fed-batch fermenta-
tion

13.5 g/L – [118]

p-Coumaric acid P. putida KT2440-CJ184 Co-express ecdB and ecdD 
with aroY gene

15.59 g/L 1.01 mol/mol [120]

p-Coumaric acid P. putida KT2440-CJ238 Delete genes encoding car-
bon catabolite repression 
control protein

– 0.946 mol/mol [119]

p-Coumaric acid P. putida KT2440-CJ242 Perform a fed-batch fermenta-
tion with by using high pH 
solution of p-coumaric acid 
as feeding solution

50 g/L – [121]

Guaiacol Amycolatopsis sp. ATCC 39116 Delete two putative catB 
genes; Perform a fed-batch 
fermentation

3.1 g/L 0.96 mol/mol [124]

Vanillin Engineered E. coli Co-express four genes of vdh, 
desA, catA and aroY

341 mg/L 0.69 g/g [117]

Sodium benzoate and glucose P. putida KT2440-CJ102 Perform a dissolved oxygen-
state fed-batch fermenta-
tion process

35.4 g/L – [122]

Vanillin Engineered E. coli Co-express genes of vdh, 
vanA, vanB, catA, aroY and 
kpdB

– – [156]

Lignin hydrolysate C. glutamicum MA-2 Delete catB gene; express catA 
gene; apply a fed-batch 
fermentation process

1.8 g/L – [125]

Alkaline pretreated liquor P. putida KT2440-CJ103 Introduce aroY gene; delete 
pcaHG and catB genes

0.7 g/L – [118]

Softwood lignin hydrolysate P. putida IDPC/pTS110 Co-express pcaHG and aroY 
genes; apply a dissolved 
oxygen static batch fermen-
tation process

– 0.3–0.331 mol/mol lignin-
based aromatics

[126]

Hardwood lignin hydrolysate Sphingobium sp. SME257/
pTS084

Use G-lignin components for 
cis, cis-MA production and 
S-lignin components for cell 
growth

26.8 mg/L 0.41 mol/mol birch lignin 
derivatives

[126]

Softwood lignin hydrolysate P. putida MA-9 Construct a strain with high 
tolerance to catechol; 
enhance catechol 1,2-dioxy-
genase expression levels; 
depolymerize softwood 
lignin in supercritical water

13 g/L Nearly 100% from lignin-
based aromatics

[123]

Softwood lignin hydrolysate Amycolatopsis sp. ATCC 39116 Delete two putative catB 
genes; pretreat lignin with 
low temperature hydrother-
mal conversion method

255.8 mg/L 0.72 mol/mol [124]

Alkaline pretreated lignin 
liquor

KT2440-CJ475 Perform a constant fed-batch 
fermentation process

0.65 g/L > 100%a [121]

Base-catalyzed depolymerized 
lignin

KT2440-CJ242 Perform a constant fed-batch 
fermentation process

3.7 g/L > 100%a [121]

–, not mentioned in the paper
a  The MA yield was calculated as MA mol/(p-coumaric acid + ferulic acid) mol
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consumers’ demands for natural products have motivated 
extensive research into biological methods for vanillin 
production from glucose, phenolic stilbenes, isoeugenol, 
eugenol, or ferulic acid through fungi, bacteria and plant 
cells [68]. There are a lot of microbes reported to have 
the capability of decomposing lignin to vanillin, includ-
ing fungi and bacteria. However, vanillin was detected 
only in trace amounts in most cases. Recently, the van-
illin metabolism in R. jostii RHA1 was blocked and the 
mutant strain was found to accumulate 96 mg/L vanillin 
when grown on 2.5% wheat straw lignocellulose [131] 
(Table 5). Just recently, the microbial fuel cell system has 
been also designed for lignin depolymerization to aro-
matics. In this case, lignin was dissolved in the aerobic 
cathode chamber and microbial electrochemical cells 

were cultivated in the anode chamber. When these two 
chambers were connected with a salt bridge and an exter-
nal wire, electrons generated from microbial electro-
chemical cells will reduce oxygen molecules to produce 
H2O2 at the cathode. Then, lignin was depolymerized 
through H2O2-mediated oxidative reaction, with some 
vanillin produced [132]. It means that microbial fuel cell 
system may be a choice for the production of aromatics 
from lignin.

p-Hydroxybenzoic acid is an important mono-hydroxy-
benzoic acid due to its excellent antimicrobial and antiox-
idant properties and low toxicity. Its esters are wildly used 
as preservatives in food, flavors, cosmetics and pharma-
ceutical products [133]. Although the synthetic technol-
ogy for p-hydroxybenzoic acid has been developed for 

Table 5  Aromatic and other chemicals from lignin degradation pathways by bacteria

–, not mentioned in the paper

Products Substrates Strains Main strategies Titers Yields References

p-Hydroxybenzoic 
acid

p-Coumaric acid Engineered Burkholde-
ria glumae BGR1

Delete genes encod-
ing p-hydroxyben-
zoate-3-hydroxylase, 
benzoyl-CoA 
ligase; overexpress 
p-hydroxcinnmaoyl-
CoA synthetase II

2.73 g/L 99.0% mol/mol [69]

Pyrogallol, GA Syringic acid Engineered E. coli Co-express desA, ligM 
and a GA decar-
boxylase gene

7.3 mg/L 
pyrogallol, 
18 mg/L GA

7.3 mg pyrogallol/g 
syringate, 18 mg 
GA/g syringate

[117]

Vanillin 2.5% Wheat straw 
lignocellulose

R. jostii Delete vdh gene 96 mg/L – [131]

Vanillin Lignin extracted from 
wheat straw

Shewanella putrefa-
ciens

Construct a microbial 
fuel cell system for 
lignin depolymeri-
zation

275 mg/L – [132]

Pyruvate p-Coumaric acid P. putida KT2440-
CJ122

Choose protocat-
echuic acid meta-
cleavage pathway 
for p-coumaric acid 
conversation

– 0.414 g/g [135]

Lactic acid p-Coumaric acid P. putida KT2440-
CJ122

Choose protocat-
echuic acid meta-
cleavage pathway 
for p-coumaric acid 
conversation

– 0.411 g/g [135]

Pyruvate p-Coumaric acid P. putida KT2440-
CJ124

Choose protocat-
echuic acid ortho-
cleavage pathway 
for p-coumaric acid 
conversation

– 0.019 g/g [135]

Lactic acid p-Coumaric acid P. putida KT2440-
CJ124

Choose protocat-
echuic acid ortho-
cleavage pathway 
for p-coumaric acid 
conversation

– 0.145 g/g [135]

Methane Hydrolysis lignin Anaerobic microor-
ganisms

Degrade lignin by 
anaerobic digestion 
in a nylon bag

125 mL methane/g 
volatile solid

[136]
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many years, there are still several limitations in the pro-
duction of p-hydroxybenzoic acid by chemical synthesis, 
such as low regional selectivity, harsh conditions, and 
by-product formation. Jung and co-workers engineered 
a natural pathway to produce p-hydroxybenzoic acid by 
deleting genes involved in p-hydroxybenzoic acid deg-
radation. With p-coumaric acid as substrate, the mutant 
strain accumulated 2.73 g/L p-hydroxybenzoic acid with 
a 99% conversion [69]. Pyrogallol is a common raw mate-
rial used in chemical synthesis to produce bioactive mol-
ecules. Recent research work indicated that pyrogallol 
has benign anti-proliferative effects on some cancer cells 
[134]. Thus, there is a huge demand for pyrogallol, espe-
cially the biologically produced pyrogallol for medicine 
preparation. Wu and co-workers attempted to convert 
lignin-based aromatics into pyrogallol [117]. In their 
studies, two demethylase genes with a GA decarboxy-
lase gene were co-expressed. The results showed that the 
recombinant strain yielded about 7.3 mg/L pyrogallol and 
18 mg/L GA from syringic acid, which was obtained from 
hydrogen peroxide-catalyzed lignin.

In addition to the products mentioned above, lignin 
can also be converted to succinate, acetyl-CoA, pyru-
vate, and lactic acid through various metabolic pathways. 
Moreover, different aromatic metabolic pathways differ in 
intermediates, reducing equivalents, and carbon emitted, 
which will ultimately lead to different products, and/or 
different yields of the targeted product [135]. For example, 
the ortho-cleavage pathways of both protocatechuic acid 
and catechol yield one succinate and one acetyl-CoA; the 
meta-cleavage of catechol and the 2,3 meta-cleavage path-
way of protocatechuic acid yield one pyruvate and one 
acetyl-CoA; the 4,5 meta-cleavage pathway of protocat-
echuic acid ultimately yields two pyruvates (Fig. 2).

The above chemicals are all produced by aerobic 
fermentation process. As mentioned in “The lignin-
degrading bacteria and their screening methods”, some 
anaerobic bacteria can also metabolize lignin. These 
bacteria were also applied for lignin valorization. For 
example, hydrolysis lignin was converted into biogas by 
anaerobic digestion. In this way, the cellulose and hemi-
cellulose parts of lignocellulose can be converted to eth-
anol and the lignin part can be converted to methane, 
which will improve the energy yield significantly [136]. 
With the aforementioned information, lignin represents 
a potential renewable feedstock for aromatics and other 
platform bio-products if suitable bio-catalysis routes are 
developed.

Conclusion and perspectives
Even though various lignin-degrading bacteria were 
found widely and some lignin-based aromatics metabolic 
pathways have been elucidated and applied to produce 

bio-products. Based on the current knowledge, it has 
been suggested that the conversion of high-molecular 
weight lignin into bacteria available compounds (such as 
aromatic monomers or dimers) is the major bottleneck in 
the synthesis of bio-products from lignin. There is still a 
long way to go before lignin valorization at an industrial 
scale with bacteria can be realized technically and eco-
nomically. The following perspectives should be consid-
ered for future studies:

1.	 Most lignin-degrading bacteria can only assimilate a 
fraction of lignin-based compounds. More efficient 
bacteria and metabolic pathways are in need for the 
comprehensive utilization of lignin or lignocellulosic 
biomass. As we further our understanding of lignin 
degradation process in bacteria, it is expected that 
pathway engineering can be applied in suitable bac-
terial hosts to assimilate more lignin components, as 
well as achieving high yields of the targeted products.

2.	 One drawback of lignin valorization by bacterial sys-
tem is the low product titers. The product titers from 
lignin-based solutions are much lower than from 
glucose or other common substrates. Except the lim-
ited lignin utilization capability of target bacteria, the 
inhibition from lignin-based compounds is another 
key factor that causes the low microbial productivity. 
Fed-batch fermentation is a good solution for releas-
ing the inhibition from high content lignin. Moreo-
ver, some microbes with high tolerance to lignin-
based compounds can be obtained by screening, 
genetic engineering, or adapted evolution.

3.	 One major disadvantage of using microbes in lignin 
valorization processes is their low capability in uti-
lizing water-insoluble and/or high-molecular weight 
lignin. Thus, appropriate depolymerization processes 
are required to disrupt lignin-enriched substrates 
into low-molecular weight and water-soluble species 
that can be assimilated by bacteria efficiently (Fig. 3). 
In particular, gasify the solid lignin and run a syn-
gas bacterial culture may be a promising strategy for 
lignin valorization by bacteria cultures. In this case, 
the gasified components will be utilized more effi-
ciently by related bacteria compared with the solid 
lignin or other lignin streams.

4.	 In previous lignocellulosic biorefinery designs, bio-
mass pretreatment was generally designed for high 
content fermentable sugars. As different pretreat-
ments can contribute to different lignin character-
istics [137], lignin valorization is expected to be 
considered in addition to fermentable sugars when 
pretreatment and process are designed.

5.	 In addition to biological methods, other alternative 
methods have also applied wildly in lignin valoriza-
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tion, e.g., reduction, supercritical fluids, ionic liquids 
treatment, and fractionation by ultrafiltration and 
selective precipitation [11, 13]. These methods are 
not standalone and different alternatives pathways 
must be integrated for better lignin valorization. For 
example, the present results suggest that the produc-
tivities of lignin valorization by biological methods 
are relatively low and many bacteria can only utilize 
small lignin fragments. Thus, it is promising to inte-
grate the chemical or physical lignin depolymeriza-
tion processes and biological assimilation processes.
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