
Takeuchi and Benning ﻿Biotechnol Biofuels          (2019) 12:292  
https://doi.org/10.1186/s13068-019-1635-0

REVIEW

Nitrogen‑dependent coordination of cell 
cycle, quiescence and TAG accumulation 
in Chlamydomonas
Tomomi Takeuchi1,2 and Christoph Benning1,3,2* 

Abstract 

Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biop-
harmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value 
compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more 
economically viable, a number of challenges continue to hamper algal production systems at all levels. One such 
hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as tria-
cylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity 
in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivat-
ing competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. 
Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent 
transcription factors or signaling networks appear to have successfully achieved a balance between growth and 
neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components 
linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic 
engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chla-
mydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation 
and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following 
N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and 
the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as 
those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordina-
tion of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in 
response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is 
essential to improve the prospects of biofuels and biomass production in microalgae.
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Background
The use of algae as a potential source of renewable fuel, 
animal feeds in addition to nutrients and pharmaceuti-
cals for human health has been recognized and exploited 
for decades. Both micro- and macro-algae constitute a 
diverse group of primarily aquatic photosynthetic organ-
isms with varying levels of complexity, and their natural 
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biochemical compositions (e.g., high contents of oil, 
carbohydrates, proteins, sugars, vitamins, pigments, 
or minerals) make them uniquely suitable for different 
commercial purposes. In addition to their relevance in 
agriculture as fertilizers, soil conditioners and livestock 
feeds, algae provide many nutrients essential for human 
health, including vitamins, minerals, anti-oxidants, and 
polyunsaturated fatty acids such as docosahexaenoic 
acids and eicosapentaenoic acids [1–3]. Furthermore, 
algae-derived products are also used as gelling agents 
and stabilizers in various food products, cosmetics and 
pharmaceuticals [1–3]. Over thirty recombinant pro-
teins have been successfully produced in microalgae to 
date, including hormones, enzymes, antibodies, vaccines 
and immunotoxins, highlighting the biotechnical utili-
ties and potentials of these organisms [4–7]. In the past 
few decades, microalgae have garnered renewed interests 
as alternative feedstocks for the sustainable production 
of biofuels, in the forms of biodiesel, bioethanol, biogas 
and hydrogen. Many microalgae are able to grow rapidly 
to high cell densities using CO2 or other provided carbon 
(C) sources, can be cultivated using nonarable land and 
water sources not suited for agriculture, and accumulate 
more triacylglycerols (TAG) per dry weight or per unit 
area than agricultural oil crops [8–12]. Because algae 
maintain high productivity in nutrient-rich waters, they 
can be used to remove excess nutrients from waste water 
and mitigate fertilizer runoff from farms, while simulta-
neously yielding biomass and precursors for the produc-
tion of biofuels [13–15]. In addition, the use of industrial 
flue gas as a source of C, the biorefinery-based approach 
to biofuel production, and the concurrent cultivation of 
high-value compounds were also proposed as a potential 
means to further lower the cost of algal biofuels [8–10, 
12, 16].

Although the production of sustainable energy and 
economically valuable compounds from algae hold great 
promises, a number of hurdles persist. These include 
the species-dependent recalcitrance to various genetic 
manipulations, suboptimal utilization and conversion 
of light energy and CO2 to biomass due to light satura-
tion and or photoinhibition, limited light penetrance in 
the culture, undesirable contamination, and high costs 
ultimately associated with sustaining optimal growth 
and metabolic outputs, as well as high costs of extraction 
and processing [8, 11, 12, 17, 18]. Another major impedi-
ment that prevents algal biofuels from becoming a com-
petitive alternative to fossil petroleum on a commercial 
scale involves the inverse relationship between the yield 
of cellular products and the growth of the organism. A 
plethora of abiotic stresses such as nutrient deprivation, 
extreme light conditions and changes in temperature, 
salinity or pH is known to induce the accumulation of 

sought-after molecules in algae, including TAG, hydro-
gen, and carotenoids like β-carotene and astaxanthin [9, 
18–25]. However, the increase in these compounds often 
comes at the expense of inhibited growth, resulting in the 
considerable reduction of biomass. A two-stage cultiva-
tion strategy, where the algal cells are subjected to stress 
only after a period of optimal growth and accumulation 
of biomass, has been proposed and tested to circumvent 
this problem [26–28], but this production method is still 
costly due to its extended requirement for time and the 
inherent complexity in monitoring and optimizing the 
production process.

Genetic engineering strategies in algae, which aimed to 
alter the expression levels of genes encoding individual 
enzymes involved in lipid metabolism, TAG biosynthesis 
and catabolism, or other competing C metabolic path-
ways, have seen mixed outcomes in achieving the optimal 
balance between lipid productivity and growth [29, 30]. 
Recent approaches targeting transcription factors or sign-
aling pathways that regulate C and growth metabolisms 
in algae appear to achieve more consistent successes in 
increasing TAG content with little or no compromise 
in cellular growth and proliferation by simultaneously 
modifying multiple components of a metabolic pathway 
[31–36]. However, the regulatory components and sign-
aling networks coordinating the allocations of C towards 
storage and growth are still not well characterized in 
photosynthetic eukaryotes, which continues to hamper 
the metabolic engineering efforts for algae. Therefore, a 
better understanding of the molecular mechanisms by 
which metabolism and growth are regulated and cou-
pled is necessary. Here, the nutrient-dependent transi-
tions between the cell division and quiescence cycles, the 
shifts in metabolism towards the synthesis of C storage 
compounds following nutrient starvation, and the poten-
tial molecular components mediating the cessation of 
growth and entry into quiescence under stress conditions 
are discussed focusing on nitrogen (N) starvation in the 
model green microalgae, Chlamydomonas reinhardtii, 
as a reference. Our current understanding of the signal-
ing pathways integrating the changes in metabolism and 
the cell division cycle in response to nutrient availability 
in algae is presented, followed by concluding remarks on 
the potential biotechnological implications of the pre-
sented concepts.

Chlamydomonas as a model to study key life‑cycle 
transitions
At the cell biological level, many abiotic stresses will 
induce cells to accumulate storage compounds and 
exit the normal cell division cycle to enter an alterna-
tive reversible state known as quiescence, or G0 [37]. 
When the conditions are again conducive to growth, 
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cells degrade the accumulated storage compounds, exit 
quiescence and reenter the cell division cycle [38]. Chla-
mydomonas serves as a particularly excellent model sys-
tem to study the coordination between metabolism, cell 
division cycle and quiescence in photosynthetic organ-
isms for several reasons. Chlamydomonas can be grown 
rapidly under heterotrophic, photoautotrophic or mixo-
trophic conditions, depending on the research needs [39]. 
For instance, the growth and division of Chlamydomonas 
cells can be synchronized with alternating light and dark 
cycles when they are grown photoautotrophically, ena-
bling the facile isolation of cells at different stages of the 
cell cycle [40] (Fig.  1). In addition, the life-cycle transi-
tions between cell division to quiescence and vice versa 
can be discretely controlled and analyzed by selective 
removal or resupply of nutrient(s) in the medium (Fig. 1). 
Furthermore, a great number of -omics-based studies 
has been conducted using Chlamydomonas under differ-
ent stress conditions in the past decade, and a wealth of 
literature on how Chlamydomonas cells reprogram their 
metabolism in response to nutrient shortage, such as N 

starvation at the levels of transcriptome, proteome and 
metabolome is available [41–49]. While Chlamydomonas 
is not typically considered a candidate alga for the pro-
duction of biofuel feedstocks, Chlamydomonas cells still 
accumulate a significant amount of TAG just as other 
oleaginous algae do in response to nutrient starvation 
[20]. Combined with the availability of well-established 
molecular genetics and genomic tools (e.g., the anno-
tated genome, transformation protocols, reverse genetic 
engineering tools, and mutant libraries [50–53]) and the 
haploid genome of Chlamydomonas during vegetative 
growth [39], there is a solid infrastructure for the further 
exploration of the regulatory link between metabolism 
and life-cycle transitions in this alga.

The intersection between the cell division cycle 
and the quiescence cycle in Chlamydomonas
In the presence of sufficient nutrients, Chlamydomonas 
and many other green algae grow and divide by a modi-
fied cell cycle involving multiple fissions, where the cells 
go through a prolonged growth or G1 phase followed by 
a rapid succession of S/M (DNA synthesis and mitosis) 
cycles [54–56] (Fig.  1). The gap between the S and M 
phases (known as the G2 phase) is not observed in the 
cell cycle of Chlamydomonas [57]. In addition, the cell 
cycle of photoautotrophically grown Chlamydomonas 
cells synchronizes under diel conditions such that cellular 
growth, flagella-dependent phototaxis and light-depend-
ent reactions of photosynthesis are maximized during 
the day. Processes such as the replication of DNA and 
cell division (i.e., S/M phase), which may benefit from the 
absence of potentially damaging photons and require the 
resorption of flagella for the basal body-mediated coor-
dination of mitosis and cytokinesis, are timed to occur 
during the night [40, 55, 56, 58]. Early in G1, the newly 
hatched Chlamydomonas daughter cells are in a stage 
called pre-commitment, where the cells have not yet 
reached the critical size necessary to achieve competency 
for division. When these pre-commitment cells reach 
a critical volume, they pass a size-regulated checkpoint 
termed “Commitment”, which is a point of no return 
similar to “Start” in yeast and “Restriction Point” in 
mammalian cell cycles [40, 59–61]. Since growing Chla-
mydomonas cells may reach more than ten times their 
initial volume before the start of the S/M phase after a 
prolonged G1 phase, multiple rounds (n) of S/M cycles 
are necessary to produce 2n daughters of equal size [61]. 
Thus, the number of S/M cycles that each mother cell 
undergoes is determined by its cell size such that daugh-
ters of uniform size distributions are always achieved [59, 
60] (Fig. 1).

On the other hand, when faced with nutrient limitation, 
single-celled organisms exit from the active proliferative 
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Fig. 1  The intersection between the cell division and the quiescence 
cycles in Chlamydomonas. The circles to the right represent the cell 
division cycle of Chlamydomonas characterized by multiple fissions, 
where the cells increase in volume during a prolonged growth (G1) 
phase during the light phase (white left half ), followed by rapid 
rounds of S/M (DNA synthesis and mitosis) cycles during the dark 
phase (shaded right half ) to give rise to 2n daughter cells of equal 
size. The commitment point (CP) represents the size-dependent 
checkpoint. Upon the passage of CP, the cells commit to completing 
at least one round of division even when the light or nutrients are 
subsequently withdrawn. The left circle represents the quiescence 
cycle, where the cells cease further growth and division with 1C 
(one copy) chromatin content. The entry into and exit from the 
quiescence (G0) are controlled by the availability of nutrients, such 
as nitrogen (N), and the respective changes in chlorophyll content 
of Chlamydomonas cells are depicted by different shades of green. 
The coupling of these two opposing cycles occurs during the 
post-mitotic resting stage or G1 phase prior to the passage of CP. 
Cell cycle-dependent steps are represented by the black arrow 
heads, while the nutrient-dependent steps are represented by the 
white arrow heads. N+: N-replete growth; N−: N deprivation; NR: N 
refeeding
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cycle and forego the anabolic, energy-consuming metab-
olism that is required for growth and division in favor 
of energy-saving metabolism that defines quiescence 
[62]. This is also the case for microalgae such as Chla-
mydomonas (Fig.  1). The ability of ancestral eukaryotic 
cells to enter a state of quiescence, maintain viability, 
and subsequently resume growth when the conditions 
improve, was likely critical, not only for their immedi-
ate survival but the subsequent evolution of species. The 
molecular mechanisms by which cells transition from 
active cell division to quiescence cycles and vice versa in 
response to nutrient availability are best characterized in 
yeast [38]. However, the capacity to orchestrate these life-
cycle changes is evolutionarily conserved in many organ-
isms. For instance, the entry into quiescence in cultured 
mammalian cells can be induced by serum and amino 
acid starvation, high cell density, and anchorage depriva-
tion [63–67], although their proliferation is typically con-
trolled by the developmental and contextual cues within 
the organism. Thus, some features of quiescent cells 
appear to be more universal. Although exceptions exist, 
these include the arrest of growth and cell division before 
the genome replicates, chromosome compaction, induc-
tion of autophagy, reduced rates of transcription and 
translation, and increased content of C storage molecules 
[37, 38, 62, 68].

An increasing body of work in opisthokonts as well as 
in Chlamydomonas suggests that quiescence is a poised 
and actively maintained state, where the entry into and 
exit from such a state represent distinct processes gov-
erned by unique signaling and gene-regulatory networks, 
rather than a phase of the cell division cycle or a passive 
inactive state [38, 67–72] (Fig.  1). In the opisthokont 
models of quiescence, the intersection between the 
cell division cycle and the so called quiescence cycle 
is thought to occur early in the G1 phase or during the 
“restrictive window” following the completion of a pre-
vious cell cycle before the cells pass their respective G1 
checkpoints [38, 68]. In Chlamydomonas, it is also dur-
ing the G1 or the post-mitotic resting phase prior to the 
passage of the commitment point that the cells are faced 
with a decision whether to proceed with the subsequent 
steps of the cell division cycle or to enter an alternative 
quiescence cycle (Fig. 1). After passing the commitment 
point, Chlamydomonas cells will undergo at least one 
round of division even after nutrients or light are with-
drawn [40, 60], likely because the completion of the cell 
division cycle is under the control of the intrinsic oscil-
lation of cell cycle regulators such as cyclin-dependent 
kinases (CDKs) [56]. Thus, it is only when the cyclical 
transcriptional waves during the cell cycle cease and the 
cells arrive at the pre-commitment stage that they are 
able to enter into the quiescence cycle.

The entry into the quiescence cycle in the early G1 
phase before genome replication is likely important for 
the maintenance of viability during quiescence and the 
successful reentry into the cell division cycle in response 
to growth-promoting cues. Because quiescent cells can-
not effectively dilute out molecules such as DNA dam-
aged by reactive oxygen species (ROS) through growth 
and cell division, replace  them through active synthesis, 
or repair them by energy-costly mechanisms, the con-
densation of chromosomes facilitates the preservation 
of genomic integrity and promotes survival [37, 38, 62]. 
Although the transcripts and protein products of most 
cell cycle genes are not essential for the maintenance of 
quiescence and survival in mammalian quiescent cells, 
the repression of genes that promote cell cycle progres-
sion, including genes encoding mitotic CDKs and their 
associated cyclins, is critical for the appropriate exit 
from the cell division cycle, the establishment of quies-
cence and the subsequent resumption of growth [62, 
73, 74]. In response to quiescence-inducing cues, the 
inhibitors of G1 CDKs become upregulated in various 
quiescent mammalian cell-lineages [62]. For instance, 
these inhibitors act to maintain the hematopoietic stem 
cells in quiescence and prevent them from inappropri-
ately or precociously entering the cell cycle [62, 75, 76]. 
These functions of CDK inhibitors appear conserved also 
in yeast [77]. Yeast mutant cells that have  lost the abil-
ity to repress certain growth and cell cycle-related genes 
following glucose exhaustion also have shortened lifes-
pan and fail to successfully exit quiescence upon glucose 
refeeding [78]. In Chlamydomonas, the cell density of 
mixotrophically grown cells will approximately double 
using the finite reservoir of intracellular N within the first 
24 h of N starvation [43, 51]. Following this increase in 
cell number, the expression of genes involved in cell cycle 
progression, DNA synthesis, and replication is substan-
tially reduced [42], and by day 2 of N deprivation, greater 
than 70% of the cellular population arrests growth with 
1C (one copy) chromatin content [72]. Therefore, in the 
face of starvation, the arrest of further growth and divi-
sion prior to DNA replication during the pre-commit-
ment phase is also likely an important factor enabling 
successful life-cycle transitions of Chlamydomonas.

Cellular changes that accompany N starvation 
and the entry into quiescence in Chlamydomonas
As the universal features of quiescence are further 
refined, it is becoming evident that the transition from 
the cell division cycle to the quiescence cycle and its 
reversal require the genome-wide adjustment of regula-
tory networks, metabolism, and intracellular structures 
(discussed in detail below and summarized in Fig. 2), and 
where applicable, necessitate the repression of alternative 
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non-dividing cell fates such as apoptosis, senescence and 
differentiation [67, 68, 79]. Despite the conservation of 
many quiescence-associated components and processes, 
the generation of chemical energy from light and CO2 
imposes another layer of complexity on the mainte-
nance of a non-replicating, viable, and reversible state in 
photosynthetic organisms. While many abiotic stresses 
trigger algal cells to enter a quiescent state and to form 
lipid droplets rich in TAG, the consequences of nutrient 
deprivation, especially that of N, is the best studied pro-
cess [26, 71]. It has been long known that N starvation 

induces the transcriptional program necessary for game-
togenesis,  during which the cells of opposite mating 
types differentiate into gametes capable of mating [80]. 
The fusion of these gametes allows for the formation of 
diploid zygospores, which are markedly more resilient to 
environmental insults than Chlamydomonas cells during 
vegetative growth [81, 82]. In more recent years, multiple 
-omics-based approaches have been successfully applied 
to study the systems-level responses of this alga to N dep-
rivation, revealing the wholesale cellular reprogramming 
of transcriptome, proteome and metabolome that results 
in the accumulation of C storage and a reversible quies-
cent state [41–49, 71, 72, 83] (Fig. 2).

Although some responses of the starved cells are 
nutrient-specific, the underlying fundamental principles 
governing microbes under starvation can be summa-
rized in three words—scavenge, conserve, and recycle 
[84]. In general, nutrient-deprived Chlamydomonas 
cells actively increase the scavenging and uptake of the 
limiting nutrient(s), curtail anabolic energy-consuming 
metabolism associated with growth and proliferation, 
and strategically repurpose nonessential macromolecules 
to maximize survival (Fig.  2). Although ammonium is 
the preferred source of N, Chlamydomonas cells can 
also assimilate other inorganic N-containing compounds 
[85]. Thus, following N deprivation, the abundance of 
transcripts and proteins involved in the transport and 
the metabolism of alternative, less favorable N sources 
increases almost immediately (within 0.5–1  h) [43, 85]. 
The cellular-wide reprogramming of metabolism occurs 
at the levels of transcripts and proteins to conserve 
energy and minimize N consumption. The levels of both 
cytoplasmic and chloroplast ribosomes decrease sub-
stantially [86, 87], and the total cellular contents of RNA 
[88] and protein [43] per cell become reduced by approx-
imately 60% and 50%, respectively. It has been reported 
that the proteins whose abundance increases upon trans-
fer of cells to N-free medium, such as those needed for 
N acquisition and metabolism, contain less N on average 
than those that decrease in abundance, highlighting the 
evolutionarily selected N sparing strategy to reduce the 
cellular demand for N when it is not readily available in 
the environment [43]. Chlamydomonas cells also utilize a 
similar conservation mechanism during sulfur (S) short-
age, such that the abundant proteins under S-deficient 
conditions contain less S in their amino acid side chains 
[89]. While the genes encoding the key enzymes of gly-
oxylate cycle and gluconeogenesis are downregulated 
[42], those involved in the biosynthesis and branching 
of starch peak shortly after the transfer of cells to N-free 
medium, followed by a steady decrease in their transcript 
levels until the new basal level is achieved [46]. This is in 
contrast to genes encoding enzymes of TAG biosynthesis, 

G1G0
N-

NR

Entry into G0: Scavenge, save, repurpose

Arrest of growth and division
Non-replicated genome
Redox homeostasis

Exit out of G0: Recover and resume growth

Up  Down   
Respiration Photosynthesis
Autophagy Chlorophyll
Carbon storage Membrane lipids
Nutrient uptake Translation
Gametogenesis Transcription

Up            Down   
Photosynthesis           Carbon storage  (TAG degradation)
Tetrapyrrole synthesis
Membrane lipids   
Transcription
Protein synthesis

Maintenance of G0

Fig. 2  Cellular changes accompanying the entry into and exit 
out of quiescence in Chlamydomonas. The quiescence cycle of 
Chlamydomonas cells is depicted, where the cells are colored in 
different shades of green according to the respective changes 
in chlorophyll content. The summary of characteristics that 
Chlamydomonas cells must acquire during the entry into (following 
N deprivation, N−) and exit of quiescence (G0) (following N 
refeeding, NR) are shown. The maintenance of a quiescent state is 
an active process. The repression of genes associated with cell cycle 
progression, DNA synthesis and replication must be maintained in 
order to prevent the premature entry into the cell division cycle in 
the absence of nutrient(s), such as N. The effective management of 
damaging reactive oxygen species (ROS) and the achievement of 
redox homeostasis are necessary to promote cellular survival during 
the non-dividing, energy-limited state. When N becomes available, 
the cells that remain viable and metabolically active are able to 
remobilize the accumulated carbon storage, such as triacylglycerols 
(TAG), remodel photosynthetic membranes, and resume the 
synthesis of macromolecules in order to reenter the growth (G1) 
phase. The white arrow heads depict the nutrient-dependent nature 
of these steps
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whose transcript abundance gradually increases over the 
2 day time course [46, 90], consistent with the observa-
tions that starch accumulation precedes the increase in 
TAG [45, 91, 92]. To recycle and repurpose intracellular 
reserves of N, the nonessential or damaged macromol-
ecules are engulfed within a specialized double-mem-
brane vesicle called autophagosome and are trafficked 
for degradation into the vacuole [93]. The induction 
of autophagy is one of the hallmarks of quiescent cells. 
Although many growth-inhibiting stresses lead to the 
activation of autophagy in eukaryotes [38, 93, 94], this 
catabolic process is also necessary for the survival and 
maintenance of quiescent lymphocytes and hematopoi-
etic stem cells in mammals [62]. Yeast mutants defective 
in autophagy accumulate higher levels of ROS and rapidly 
lose viability during nutrient starvation due to their ina-
bility to remobilize amino acids and synthesize proteins 
necessary for stress adaptation [95–97]. A similar loss 
of viability was recently shown for autophagy-defective 
mutants of Chlamydomonas in response to deprivation 
of N, P (phosphorus) and S [98], suggesting the impor-
tance of this catabolic pathway for stress acclimation and 
cellular homeostasis of this alga [94].

Following N deprivation, Chlamydomonas cells 
increasingly rely on respiratory metabolism to produce 
energy instead of photosynthesis [43]. The cessation 
of chlorophyll synthesis, which is regulated both tran-
scriptionally and post-translationally, leads to a drastic 
decrease in cellular chlorophyll content [43, 46, 99]. A 
marked multi-level downregulation of photosynthesis 
takes place. The abundances of many transcripts and 
proteins encoding the subunits of light-harvesting com-
plexes, the cytochrome b6f complex, photosystems I 
and II, and the plastid ATP synthase complex decrease 
with different kinetics, ultimately leading to reduced 
photosynthetic capacity, efficiency and flux [42, 43, 88, 
99–102]. After 2 days of N deprivation, the cellular lev-
els of plastid membrane lipids, especially of monogalac-
tosyldiacylglycerol (MGDG), are reduced while the TAG 
content increases, likely to sequester acyl groups inertly 
in lipid droplets as the extent of the photosynthetic mem-
brane decreases [91, 99, 103, 104]. Most transcripts and 
enzymes of the Calvin–Benson cycle, especially rubisco, 
are reduced in abundance following 2 days of N depriva-
tion, resulting in the increased levels of its intermediates 
[42, 43]. In agreement with these observations, the rates 
of carbon assimilation and consumption decrease sig-
nificantly during N starvation [105]. Although the mRNA 
levels of mitochondrial respiratory complexes remain 
relatively stable during the 2  days of N starvation, their 
protein levels, along with the corresponding mitochon-
drial ATP synthase and cytochrome bc1 complex com-
ponents, become more abundant [43]. Consistently, the 

oxygen consumption increases on a protein basis, further 
corroborating the bioenergetic preference for respiration 
over photosynthesis during N deprivation [43].

The recent interest in regulatory and metabolic path-
ways governing TAG accumulation in microalgae has led 
to the identification of key enzymes responsible for the 
biosynthesis of TAG in Chlamydomonas [20]. Although 
the expression changes of many fatty acid and lipid 
metabolism genes are modest, notable changes in the 
transcript levels of genes involved in TAG biosynthesis 
and a number of lipases are observed following N depri-
vation [42, 43, 90]. The Chlamydomonas genome encodes 
one type I (DGAT1) and five type II (DGTT1–5) diacylg-
lycerol acyltransferases, which catalyze the transfer of an 
acyl-moiety from acyl-CoA to the sn-3 position of diacyl-
glycerols (DAG), and one phospholipid: DAG acyltrans-
ferase (PDAT), which catalyzes the transfer of an acyl 
chain at the sn-2 position of membrane lipids to the sn-3 
position of DAG, resulting in the synthesis of TAG [20, 
106, 107]. Among them, the transcript levels of DGAT1, 
DGTT1, and PDAT show the most significant upregu-
lation following N deprivation [42, 43, 90]. The Chla-
mydomonas PDAT catalyzes the biosynthesis of TAG 
through its acyltransferase and acylhydrolase activities 
toward a broad range of acyl-lipid substrates, including 
galactolipids, phospholipids, cholesteryl esters and TAG 
[104]. The genes encoding proteins with potential roles 
in TAG lipolysis, such as acylglycerol lipase, LIP1 (Lipase 
1) with a likely role in DAG turnover [108] and those 
encoding the putative peroxisomal β-oxidation enzymes 
are concurrently downregulated [42]. Chlamydomonas 
cells can directly funnel exogenous acetate towards the 
synthesis of fatty acids and TAG following N deprivation, 
and the presence of acetate increases the TAG yield [42, 
92, 103, 109]. Under mixotrophic conditions, over 80% of 
starch molecules are produced from the assimilated pho-
tosynthates or CO2. However, under these conditions, 
approximately 75% of the C used for the de novo-synthe-
sis of fatty acids and 70% of the subsequently assembled 
TAG or other lipid species are derived from acetate fol-
lowing N starvation [105], supporting the previous 30% 
estimate of the contribution of membrane lipid turnover 
to TAG synthesis [103]. Additional fatty acids are derived 
from the remodeling of plastid membranes by enzymes 
such as PGD1 (Plastid Galactoglycerolipid Degradation 
1), a lipase responsible for cleaving the acyl chains from 
MGDG for the synthesis of TAG [110].

Many studies have historically observed how N dep-
rivation results in the diversion of C towards storage 
compounds, namely TAG and starch, at the expense of 
decreased growth in a number of microalgae [9, 80, 111–
113]. The tight coupling and inverse relationship between 
TAG accumulation and proliferation have also been 
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demonstrated in yeast, where the inhibition of cell cycle 
progression leads to the increased formation of lipid 
droplets, regardless of whether the delay is caused by 
drugs or mutations in genes encoding cell cycle regula-
tors [114]. It was also recently reported that the mRNAs 
encoding early fatty acid synthesis enzymes (e.g., acetyl-
CoA carboxylase 1, ACC1 and fatty acid synthase 1 and 
2, FAS1 and 2) are translated in a cell cycle and nutrient 
dependent manner in yeast [115]. However, the analo-
gous proteins in Chlamydomonas are less abundant fol-
lowing N deprivation than in yeast [43]. Nevertheless, 
different hypotheses and theories were put forward to 
answer the question of why algae accumulate TAG in 
response to growth-inhibiting stresses following entry 
into quiescence. The potential physiological roles of lipid 
droplets and TAG during stress include fatty acid stor-
age for survival and future membrane biosynthesis, a 
transient reservoir of acyl groups for the remodeling of 
the lipids in the photosynthetic membrane, a reservoir 
of carotenoids for photoprotection, and a sink for excess 
and unused photosynthetic energy and reductants to pre-
vent photo-oxidative damage [9, 24, 105, 110, 116–121]. 
The studies in yeast suggest that the availability of acetyl-
CoA, a central carbon metabolite that is derived from the 
breakdown of C storage, is a crucial factor for the cel-
lular exit from quiescence and reentry into the cell divi-
sion cycle. These studies suggest that the rapid increase 
in acetyl-CoA that results upon a suitable metabolic 
stimulation is necessary for driving the acetylation of his-
tones at growth regulatory genes, their activation, and 
consequently enable cells to exit from quiescence [122, 
123]. Whether these regulatory principles apply to algae 
remain to be explored.

The DREAM complex: a master transcriptional 
regulator of cell division cycle also in algae?
Despite the recent advances in understanding the impact 
of nutrient availability on gene expression and metabo-
lism of Chlamydomonas, the signaling pathways and 
molecular components enabling the entry into, main-
tenance of, and exit from quiescence remain largely 
unknown in photosynthetic eukaryotes. One potential 
regulatory component that may play a role in the nutri-
ent-dependent life-cycle transitions of Chlamydomonas 
is the evolutionarily conserved multi-protein transcrip-
tional regulatory complex known as DREAM (DP, RB, 
E2F and Myb-MuvB) (Fig.  3), although its presence in 
algae has yet to be confirmed. It is notably absent from 
yeast, but organisms from many evolutionary lineages 
including mammals [124–126], fruit flies [127, 128], 
worms [129, 130] and plants [131] utilize this structur-
ally conserved module to coordinate the expression of 
the cell division cycle-dependent and development-
specific genes in response to different cues present dur-
ing quiescence, cell proliferation and differentiation, and 
organismal or sexual organ development [73, 74]. These 
complexes, whose activities are determined by the com-
binatorial presence of distinct components, are impor-
tant for the context-dependent transcriptional regulation 
of cell cycle genes, whose protein abundance is largely 
determined at the transcriptional level [74]. The core 
components of DREAM complexes are conserved among 
species, which include retinoblastoma (RB) tumor sup-
pressor proteins, adenovirus early gene 2 binding factor 
(E2F) family of transcription factors and their dimeriza-
tion partners (DP), and the members of the multi-vulva 
class B (MuvB) complexes, which were initially identified 

(See figure on next page.)
Fig. 3  Proposed role of putative DREAM-like complexes in the nutrient-dependent life-cycle transitions of Chlamydomonas. Although the 
existence of DREAM-like (DP, RB, E2F and Myb-MuvB) complexes has not been confirmed for the algal lineage, the repression of genes related 
to the cell cycle and the cessation of growth and division with 1C (one copy) DNA content in the absence of N have been previously observed. 
Furthermore, some components of DREAM-like complexes are conserved in Chlamydomonas, including the RB pathway proteins (MAT3/RB, Cre06.
g255450; E2F1, Cre01.g052300; DP1, Cre07.g323000), three CXC domain-containing proteins (CHT7, Cre11.g481800; CXC2, Cre08.g361400 and 
CXC3, Cre12.g550250; potential orthologs of mammalian LIN54, fly Mip120, worm lin-54, and Arabidopsis TCX5), and one Myb protein with three 
Myb-repeats (Myb3R, Cre12.g522400). The model of their hypothetical functions within the putative DREAM-like complexes in mediating the 
nutrient-dependent entry into and exit from quiescence (G0) is illustrated. The grey dotted lines are used to denote the hypothesized interactions. 
In line with the literature demonstrating their importance in the transcriptional regulation of cell cycle-dependent gene expression in other model 
organisms, the putative Chlamydomonas DREAM-like repressor complex is postulated to repress the genes associated with cell cycle progression 
during the post-mitotic or G1 phase prior to the passage of commitment point (CP) in response to N deprivation (N−), allowing the exit from active 
proliferation and entry into quiescence. Conversely, upon sensing the replenishment of N, the cells need to reinstate their capacity for energy 
capture and macromolecular synthesis. Once their metabolism is sufficiently restored to sustain further growth, the cell cycle-related genes are 
postulated to become activated by the dissociation of a DREAM-like repressor complex and or the formation of its activator counterpart, allowing 
the cells to fully exit from quiescence to reenter the cell division cycle. Although these complexes may also play a role in the progression of the cell 
division cycle itself, they are omitted from the model for the sake of simplicity. The plus and the minus signs next to the energy status represent 
energy sufficient and deficient states, respectively. Cell cycle-dependent steps are represented by black arrow heads, while the nutrient-dependent 
steps are represented by white arrow heads. N+: N-replete growth; N−: N deprivation; NR: N refeeding
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through mutations that cause synthetic multi-vulva phe-
notypes in Caenorhabditis elegans [73, 74].

One of the best characterized core constituents of the 
metazoan MuvB complexes are the proteins that con-
tain two tandem cysteine-rich motifs or domains that are 

collectively referred hereafter as the CXC domain. These 
CXC domain proteins include the mammalian LIN54 
[124, 126], Drosophila Mip120 [127, 132], and C. ele-
gans Lin-54 [129], and their CXC domains are necessary 
for the sequence-specific binding of DNA [132–135]. 
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For instance, the CXC domain of mammalian LIN54 is 
known to directly bind the cis-regulatory element known 
as the cell cycle genes homology region (CHR) [133, 
135], which is a primary promoter element involved in 
the regulation of G2/M phase genes [136–139]. Conse-
quently, LIN54 is essential for the recruitment of both 
activator and repressor DREAM complexes to these sites 
[74]. The CHR consensus sequences, defined by TTY​
RAA​, where Y and R represent pyrimidine and purine 
bases, respectively [135], are enriched in the promoter 
regions of MuvB-target genes, not only in humans [137–
139] but also in flies [140] and worms [134]. Although a 
CXC domain protein, TCX5, is present in both the acti-
vator and repressor forms of Arabidopsis DREAM-like 
complexes, which play a crucial role in the regulation 
of G2/M phase-specific gene expression, its functional 
contributions within these complexes remain unknown, 
and the CHR elements are yet to be identified in plants 
[74, 131, 141]. Despite the ubiquitous presence of CXC 
domain-containing proteins in plants, the soybean CPP1 
and maize CBBP remain some of the few cases where 
their CXC domains have been implicated in the bind-
ing of DNA [142, 143]. Regardless, in addition to TCX5, 
increasing numbers of studies are revealing the functions 
of CXC domain proteins in the regulation of the cell cycle 
and cell division of Arabidopsis. One such protein, TSO1, 
is involved in the control of the cell division cycle in 
meristems, shoots, and roots during plant development 
[144–149], and its closest paralogs, SOL1 and 2 have 
recently been implicated in the regulation of stomatal cell 
division and fate transition [150].

Other transcription factors are also known to associate 
with the core complexes, but their presence is less con-
served among different organisms. While recruitment of 
the forkhead box M1 (FOXM1) transcription factor to 
the MuvB complex is necessary for the full activation of 
G2/M phase genes in mammals, no forkhead transcrip-
tion factors have been found in the orthologous com-
plexes of flies, worms, and plants [74]. Furthermore, 
Myb-type transcription factors, which function as acti-
vators of gene expression both in mammals and flies, are 
apparently missing from the DRM complex of C. elegans, 
and the C. elegans DRM is thought to act primarily as a 
transcriptional repressor [74, 129]. This is in contrast to 
DREAM-like complexes of Arabidopsis, where a small 
family of Myb3R transcription factors with three Myb-
repeats with activator or repressor function(s) regulate 
the expression of many G2/M phase-specific genes by 
interacting with the promoter sequence known as the 
mitosis-specific activator (MSA) element [131, 151–154]. 
Therefore, Myb3Rs play an important role in determin-
ing the direction of transcriptional regulation mediated 
by Arabidopsis DREAM-like complexes along with the 

corresponding E2Fs, and despite the seeming absence of 
the CHR elements in plants, the target promoter regions 
of Myb3R-containing DREAM-like complexes of Arabi-
dopsis are found to be enriched in MSA and or E2F ele-
ments [131].

The Chlamydomonas genome also encodes some of the 
conserved components of DREAM complexes (Fig.  3), 
and their protein products have documented roles in the 
control of cell-size homeostasis, the cell division cycle, 
and quiescence. Chlamydomonas utilizes a homolog 
of the mammalian RB protein, MAT3, in coordination 
with the E2F1 transcriptional activator and its dimeriza-
tion partner, DP1, to regulate cell size and cell cycle pro-
gression [61, 155, 156]. However, unlike its mammalian 
counterpart, the Chlamydomonas MAT3/RB complex 
is stably associated with chromatin, and the progression 
through the cell division cycle is thought to involve dif-
ferential phosphorylation of the RB protein or the partic-
ipation of additional activator or repressor proteins [156]. 
The mat3–4 mutant is characterized by a misregulation 
of cell size homeostasis. Its cells are smaller in size than 
wild-type cells, because they pass the commitment point 
at a smaller volume and also undergo more rounds of the 
S/M cycle than the wild type [61, 155]. A novel class of 
cyclin dependent kinase, CDKG1, is one of the regulators 
responsible for coupling the mother cell size to the num-
ber of subsequent divisions, by phosphorylating MAT3 
in a cyclin D-dependent manner [157]. A single Myb3R 
gene is encoded within the genome of Chlamydomonas, 
whose expression is upregulated when the light–dark 
synchronized Chlamydomonas cells go through divi-
sion [158]. The coexpression network generated for 
Chlamydomonas using genome-wide transcriptom-
ics conducted under a number of conditions, including 
nutrient deprivation, has also found this gene to coex-
press or cluster closely with other cell cycle genes [159]. 
Despite the intriguing observation that the five repeats 
of the Arabidopsis MSA elements are found within the 
600 bp upstream of the translational start site of Myb3R 
gene itself, no obvious enrichment of this motif has been 
observed in the promoter regions of cell cycle genes 
when the entire genome was used as a Ref. [158]. Fur-
thermore, since none of the previously identified candi-
date cis-regulatory elements with a potential to regulate 
the diurnal transcription programs in Chlamydomonas 
appear to resemble the MSA motif [158, 160], further 
studies are needed to implicate Myb3R in cell cycle regu-
lation or cell division.

In addition to the aforementioned genes, the Chla-
mydomonas genome encodes at least three proteins 
with annotated CXC domains. Although the literature 
on these proteins is scarce, one CXC domain protein in 
Chlamydomonas with characterized functions in the 
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transcriptional regulation of quiescence-associated pro-
grams is the Compromised Hydrolysis of TAG 7 (CHT7) 
protein. The mutant ablated in CHT7 is impaired in its 
ability to remobilize TAG and shows delayed growth 
upon N or P resupply and rapamycin removal (follow-
ing a period of N or P starvation or rapamycin treat-
ment, respectively [71]). Decades ago, a similar delay 
in the resumption of growth was also observed for the 
mat3 mutant during N refeeding [161]. Similarly to RB 
and related proteins, CHT7 proteins are located in the 
nucleus, although some are also observed in the cytosol 
[71]. No obvious defects in growth are detected in the 
cht7 mutant during N-replete growth despite the large 
number of misregulated genes in this mutant under this 
condition. Of these genes, nearly 50%, including those 
involved in photosynthesis, flagellum assembly and 
autophagy, are expressed in cht7 cells under N-replete 
conditions in a similar manner as in wild-type cells, 
which are subjected to N deprivation [71]. In addition, 
many genes involved in chloroplast-related functions, 
including photosynthesis, tetrapyrrole synthesis and 
plastid ribosomal protein synthesis, fail to reverse their 
expression upon N refeeding in cht7 as would be typi-
cal for genes in the wild type [72]. Thus, CHT7 has been 
hypothesized as an apparent repressor, during N-replete 
growth and N refeeding of a subset of transcriptomic 
programs associated with N deprivation-induced quies-
cence. Furthermore, it was hypothesized that the com-
plete exit from quiescence during N refeeding requires 
the repression of these programs by CHT7 [71, 72]. How-
ever, the mechanisms governing CHT7 activity remain 
unclear. Although the majority of CHT7 proteins of 
Chlamydomonas exist as part of a protein complex, the 
levels of CHT7 (per total protein) do not fluctuate with 
changes in N abundance, and the apparent size and abun-
dance of the observed complex stay constant regardless 
of N availability [71]. Thus, further studies are needed to 
explore the molecular mechanisms by which the CHT7 
complex affects quiescence, whether the CHT7 protein 
plays a direct or indirect role in the transcriptional reg-
ulation of cell cycle genes, or whether or not the Chla-
mydomonas CHT7 complex is functionally analogous to 
DREAM complexes in other organisms.

Signaling networks linking the metabolic status 
to growth in Chlamydomonas: TOR and SnRK/CKIN 
pathways
Evolutionarily conserved signaling pathways playing a 
central role in the coordination of nutrient status with 
metabolism and cellular growth in eukaryotes, includ-
ing photosynthetic organisms, are those involving the 
target of rapamycin (TOR) kinases and their antagonists, 
AMPK/Snf1/SnRK/CKIN kinases (Fig.  4). As suggested 
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Fig. 4  Working model of TOR and SnRK/CKIN family of kinases 
and their major functions in Chlamydomonas stress biology. 
Chlamydomonas rapamycin-sensitive TOR complex 1 (TORC1) 
consists of TOR, LST8 and RAPTOR. The inhibition of TORC1 by 
pharmacological means (rapamycin, AZD-8055 or Torin1) has 
enabled the studies of TOR pathway functions in Chlamydomonas, 
whereas the components of TORC2 have not been identified in 
photosynthetic organisms. When the conditions are conducive to 
growth (i.e., in the absence of abiotic stresses), the TORC1 complex 
promotes anabolic processes such as protein synthesis and therefore 
growth and represses stress-induced responses such as TAG synthesis 
and the induction of autophagy. TORC1 has also been shown to 
positively regulate the levels of inositol polyphosphates (InsPs), 
InsP7 and InsP8, to promote growth and inhibit TAG accumulation. 
Although the members of the SnRK and CKIN family of kinases in 
Chlamydomonas and microalgae are not well characterized to date, 
several studies have shown the functions of some members in the 
acclimation of cells to abiotic stresses, including the adjustment 
of reactive oxygen species (ROS), accumulation of TAG and sulfur 
(S) assimilation during sulfur deprivation. The relationships that are 
supported by experiments are shown in solid black lines, whereas the 
dotted grey lines with question marks represent the hypothesized 
regulatory links based on previous findings in other model organisms 
that require further studies in Chlamydomonas. The positive and 
negative regulatory relationships are represented by arrows and 
T-bars, respectively
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by their names, TOR1 and TOR2 kinases were first iden-
tified by a genetic mutant screen in yeast as targets of 
rapamycin [162], an antifungal and immunosuppressant 
compound isolated from the soil bacterium Streptomy-
ces hygroscopicus [163, 164]. Whereas the treatment of 
wild-type yeast cells leads to the arrest of the cell cycle 
in the G1 phase, those with a mutation in the TOR1 or 2 
are resistant to the drug [162]. Although most organisms 
contain only a single TOR [165], the functional equiva-
lents of two distinct multi-protein complexes discovered 
in yeast, TOR complex 1 (TORC1) and 2 (TORC2) [166–
168], are present in many organisms [169–171]. Despite 
the identification of TOR and the conservation of TORC1 
components, such as RAPTOR (regulatory-associated 
protein of TOR) and LST8 (lethal with SEC13 protein 8) 
in plants and algae [172–177], no obvious homologs of 
TORC2 components have been identified in organisms 
of the green-lineage, although its functional equivalent is 
postulated to exist [177–181]. Nevertheless, the primary 
functions of the TOR pathways and the mechanisms of 
TOR inhibition by rapamycin appear conserved in nearly 
all groups of organisms. When nutrients are ample, TOR 
complexes act as positive regulators of cellular growth by 
promoting anabolic processes such as nucleotide synthe-
sis, transcription, ribosome biogenesis and translation, 
while inhibiting the opposing catabolic processes includ-
ing mRNA degradation and autophagy [170, 179–183] 
(Fig. 4).

Rapamycin acts to inhibit TOR by interacting with 
a 12-kDa proline isomerase immunophilin known as 
FK506-binding protein (FKBP12) [162]. The FKBP12–
rapamycin complex subsequently binds to the FRB 
(FKBP12–rapamycin binding) domain of TOR, lead-
ing to its inactivation by limiting the accessibility of its 
kinase domain to the substrate [184]. In opisthokonts, 
TORC1 is sensitive to rapamycin whereas TORC2 is 
not [166, 167, 185–187], largely owing to the presence 
of RICTOR (rapamycin-insensitive companion of TOR) 
in TORC2 which renders the FRB domain inaccessible 
to the FKBP12–rapamycin [188, 189]. In addition, since 
the FKBP12 proteins of many plant species are unable to 
stably associate with rapamycin, land plants are resist-
ant or highly tolerant to the growth-inhibitory effects of 
rapamycin [172, 190–193]. In contrast, growth and cell 
cycle progression of Chlamydomonas are sensitive to 
rapamycin treatment, although to a lesser extent when 
compared to yeast or mammals due to the lower affinity 
of its FKBP12 protein to rapamycin [173]. As observed 
for other organisms, the Chlamydomonas TOR protein 
exists as part of a large molecular weight complex, and its 
single copy LST8 co-purifies with TOR and FKB12 in the 
presence of rapamycin, confirming the existence of Chla-
mydomonas TORC1 [175]. The Chlamydomonas LST8 

plays a functionally analogous role to those of yeast and 
mammals, where the associations of the LST8 proteins 
with the kinase domains of respective TORs are neces-
sary for their full catalytic activities [194, 195], and the 
seven WD-40 domains present within Chlamydomonas 
LST8 may have an additional function in facilitating the 
association of TORC1 with its various protein substrates 
[175]. Furthermore, some fractions of both TOR and 
LST8 appear to be peripherally associated with mem-
branes of the endoplasmic reticulum (ER) system, par-
ticularly near the peri-basal body regions at the base of 
flagella, where the demand for protein synthesis is likely 
high [175, 196].

In animals and yeast, the network governed by TORC1 
constitutes one of the major signaling pathways link-
ing nutrient availability to the autophagic machin-
ery, by the phosphorylation-mediated regulation of 
ATG (autophagy-related) proteins that orchestrate 
autophagy [197–199]. As discussed earlier, the activa-
tion of autophagy is a necessary cellular response to 
promote survival during starvation and the consequent 
establishment of a reversible state of quiescence. The 
ATG proteins are also conserved in Chlamydomonas 
[183], and the FKBP12–rapamycin mediated inhibition 
of TORC1 leads to an increased bleaching and vacuoli-
zation [173]. One such conserved ATG protein, ATG8 
has also been demonstrated as an autophagy-specific 
marker in Chlamydomonas [93, 200]. In many organ-
isms, the covalent attachment of phosphatidylethanola-
mine (PE) to ATG8 (known as lipidation) allows for the 
association of ATG8 proteins with the autophagosome 
vesicle until the fusion of the ATG8–autophagosome 
with the vacuole takes place [201]. Because the amount 
of ATG8 proteins is directly related to the number and 
size of autophagosomes, the levels of lipidated ATG8 and 
their altered cellular localization can be used as mark-
ers of active autophagy [202], which holds true also 
for Chlamydomonas [93, 200]. The treatment of Chla-
mydomonas cells with rapamycin leads to the accumula-
tion of ATG8 and its lipidated forms, followed by their 
relocation to large punctate structures in the cytoplasm, 
indicating the inhibition of TORC1 as an important step 
in the activation of autophagy [93]. Moreover, the same 
ATG8-marker responses are induced upon subjecting the 
cells to nutrient starvation and oxidative or ER stresses, 
illuminating the role of the TORC1 pathway in regulating 
stress-induced autophagy of this alga [93, 203].

In opisthokonts as well as plants, the mechanisms by 
which TORC1 promotes protein synthesis are known 
[204–208]. For instance, in mammals, the direct phos-
phorylation and activation of S6 kinase (S6K) by TORC1 
leads to the S6K-dependent phosphorylation of the 
ribosomal protein S6, resulting in increased rates of 
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translation initiation [204, 207]. The TOR–S6K pathway 
is also conserved in plants, and the translation initia-
tion of cytosolic S6 ribosomal protein in Arabidopsis is 
likewise regulated by this pathway [192, 208–210]. The 
Arabidopsis TOR kinase also promotes plastid ribo-
somal biogenesis by upregulating the transcription 
and translation of genes and mRNAs, respectively, 
for nuclear encoded plastid ribosomal proteins [208]. 
Although Chlamydomonas TOR kinase is implicated 
in the regulation of de novo amino acid synthesis [211, 
212], and rapamycin treatment is also known to inhibit 
protein synthesis in this alga [213], the signaling path-
ways downstream of TOR controlling protein synthesis 
are generally less well characterized in algae. However, 
TOR-dependent phosphorylation sites were also recently 
identified in S6K and ribosomal S6 protein of Chla-
mydomonas through phosphoproteomic studies of cells 
treated with rapamycin, AZD-8055, or Torin1 [214–217], 
and TORC1-mediated phosphorylation of the riboso-
mal S6 protein at serine-245 was shown to be regulated 
by N as well as P availability in Chlamydomonas [218, 
219]. Furthermore, a recent study has begun to establish 
the regulatory link between P availability and TORC1-
signaling Chlamydomonas [219]. Using the phospho-
rylation of ribosomal S6 protein as a marker of TORC1 
activity, it was shown that TORC1 becomes inhibited 
following P starvation likely through a drastic reduction 
in the abundance of LST8 proteins, which are necessary 
for the activity of TOR complexes [166, 194, 195, 219]. 
Therefore, it is increasingly evident that the inhibition 
of TORC1 and the deprivation of nutrients both trigger 
similar cellular processes and stress responses, not only 
in yeast where the role of TOR pathways in the coor-
dination of nutrient status to cellular growth is firmly 
established [220–223], but also in algae [35, 224–227]. 
In addition to the cessation of growth, the activation of 
autophagy and the reduction in protein synthesis that 
occur upon TORC1 inhibition and nutrient starvation, 
the repression of TORC1 and N shortage both induce the 
formation of TAG-rich lipid droplets in various species of 
algae [35, 224–226]. In Chlamydomonas and the red alga 
Cyanidioschyzon merolae, the repression of TORC1 path-
ways by pharmacological means (rapamycin, AZD8055, 
or Torin1) has been shown to result in the upregulation 
of key enzymes involved in TAG biosynthesis, such as 
glycerol-3-phosphate acyltransferase (GPAT) and DGAT 
[224, 225]. Consistent with these observations, the accu-
mulation of TAG and starch is also reported for Arabi-
dopsis seedlings with inducible repression of TOR [228].

Although the molecular mechanisms by which TOR 
pathways regulate lipid metabolism or TAG accumulation 
are currently not well known in algae, a recent genetic 
screen for Chlamydomonas mutants with increased 

sensitivity to rapamycin has identified the VIP1 locus, 
suggesting a relationship between inositol polyphos-
phates (InsPs), TAG accumulation, and TOR [229]. The 
VIP1 gene encodes a kinase responsible for the pyroph-
osphorylation of InsP6 to yield InsP7 and InsP8, which are 
important signaling molecules [229]. The vip1-1 mutant 
has decreased levels of InsP7 and InsP8, slower growth 
and increased levels of TAG during mixotrophic growth 
in the presence of acetate [229]. A similar reduction in 
the InsP7 and InsP8 content was observed for rapamycin-
treated wild-type cells, further suggesting a link between 
InsPs, TAG, and the TOR pathway [229]. In addition, the 
expression profiles of thousands of genes are reported to 
change in response to the rapamycin treatment of Chla-
mydomonas cells [230], and they appear to at least par-
tially resemble the transcriptional program associated 
with nutrient starvation. Following rapamycin treatment, 
where genes involved in autophagy, vacuolar function, 
amino acid metabolism and transport tend to be upregu-
lated, genes involved in processes that require a robust 
anabolic metabolism, e.g., nucleotide synthesis to sustain 
DNA replication and the cell cycle become downregu-
lated [230]. The decrease in the transcript levels of cell 
cycle-related genes in response to rapamycin is not only 
consistent with the observed inhibition of growth follow-
ing TORC1 inactivation in Chlamydomonas [173, 211], 
but also with studies in Arabidopsis, where the expression 
of E2Fa and E2Fb targets with central roles in the regu-
lation of cell cycle is activated by the TORC1-mediated 
phosphorylation and repressed upon TORC1 inhibition 
[231, 232]. Arabidopsis TORC1 was also recently shown 
to phosphorylate and inhibit a member of the dual-spec-
ificity tyrosine phosphorylation-regulated kinase (DRYK) 
family, AtYAK1 an orthologue of Yet Another Kinase 1 in 
yeast), which acts as a negative regulator of plant growth 
[233–235]. Under conditions where TORC1 is inactive, 
the repression on AtYAK1 is lifted, and AtYAK1 activates 
plant-specific CDK inhibitors, SMR (Siamese-related) 
proteins, to negatively regulate cell cycle progression 
[235]. Yeast YAK1 and its metazoan orthologs, mam-
malian DYRK1A and fly Minibrain kinases, also have 
known roles in inhibiting proliferation [236–242]. The 
mammalian DYRK1A upregulates the expression of the 
gene encoding CDK inhibitor, CDKN1B (also known as 
p27KIP1) [239]. The DYRK1A-mediated phosphoryla-
tion of CDKN1B, in addition to cyclin D1 and D3, pro-
motes CDKN1B stabilization, cyclin D degradation and 
consequently cell cycle exit [237, 240]. Furthermore, 
the mammalian DYRK1A also phosphorylates LIN52, a 
component of the MuvB core, to facilitate DREAM com-
plex formation and to promote entry into quiescence or 
senescence [241]. In these contexts, it may be worthy to 
note that Chlamydomonas also has an ortholog of YAK1 
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named TAR1 (TAG accumulation regulator 1), another 
green-lineage-specific DRYK kinase, DYRKP, and other 
DRYK-related kinases [243, 244]. While both TAR1 and 
DYRKP have been shown to regulate the accumulation 
of TAG and for DYRKP, of starch during N and S dep-
rivation [243, 244], their potential role in the nutrient-
dependent regulation of the Chlamydomonas cell cycle is 
not yet clear.

In animals and yeast, AMP-activated kinase (AMPK) 
and sucrose nonfermenting 1 (Snf1) kinase, respectively, 
are central signaling components that are activated by 
nutrient limitation and other stresses, and act antago-
nistically to TORC1 [245–249]. The orthologs of AMPK/
Snf1 are also conserved in plants and algae, and they are 
known as Snf-related kinases (SnRKs) in Arabidopsis 
and sometimes referred to as CKINs (Chlamydomonas 
kinases) in Chlamydomonas [179, 250]. In general, the 
activated AMPK/Snf1/SnRK/CKIN signaling pathway 
promotes cellular survival and cessation of growth dur-
ing stress by upregulating catabolic processes to gener-
ate more energy and downregulating growth-promoting 
processes to consume less energy [179, 247, 249–253] 
(Fig. 4). In mammalian cells, AMPK is known to inacti-
vate TORC1 in response to energy and nutrient stresses 
by phosphorylating one of its constituents, RAPTOR, 
and by the subsequent recruitment of 14-3-3 proteins 
[254]. In addition to its inhibitory effect on TORC1, 
AMPK facilitates the arrest of the cell cycle during the 
G1 phase prior to the replication of DNA by upregulating 
and stabilizing the levels of CDK inhibitors, CDKN1A 
(also known as p21WAF1) and CDKN1B (also known as 
p27KIP1), respectively [255–257]. The AMPK also pro-
motes the initiation of autophagy, upregulates the uptake 
of glucose and fatty acids, and facilitates the breakdown 
of these molecules by the activation of glycolysis and 
fatty acid oxidation, respectively [249, 252]. In a similarly 
opposing manner to TORC1, AMPK acts to inhibit the 
biosynthesis of nearly all macromolecules, including pro-
teins, ribosomal RNA, lipids, and carbohydrates by the 
direct phosphorylation of various key components and 
regulatory factors of these anabolic pathways [249].

The SnRK family of kinases in Arabidopsis is classified 
into three subfamilies. The SnRK1 subfamily represents 
the smallest group with three genes (SnRK1α1–3), and 
they have the greatest similarity to the yeast Snf1 [258]. 
The SnRK1 family of genes coordinates the energy and 
redox homeostasis of plants in response to a plethora of 
growth-inhibiting stresses and regulates a broad range 
of metabolic pathways through the phosphorylation 
of the key enzymes or transcription factors to improve 
stress tolerance and promote survival [259–261]. In this 
context, the members of the SnRK1 family act to inhibit 
highly anabolic processes such as protein synthesis and 

proliferation, while activating stress-induced responses 
such as gluconeogenesis and starch synthesis in plants 
[179]. The antagonistic activities of SnRK1α1 towards 
TORC1 have also been demonstrated in Arabidopsis 
by its ability to interact with and phosphorylate RAP-
TOR1B [262]. Although a complete knockout of SnRK1 
genes results in embryonic lethality in Arabidopsis [262], 
similarly to the knockout mutants of TOR [172], induc-
ible amiRNA::SnRK1α2 transgenic plants in the snrk1α1 
mutant background show a hyper-phosphorylation of 
ribosomal protein S6, indicating their crucial role in the 
suppression of TORC1 and the downregulation of trans-
lation [262]. The SnRK2 and 3 subfamilies in Arabidopsis 
are also reported to function in the adaptation of plants to 
a wide range of abiotic stresses, including drought, flood, 
cold, salinity, and nutrient scarcity [263]. Although the 
characterization of the SnRK family in algae lags behind, 
a number of studies in Chlamydomonas have suggested 
the role of SnRKs/CKINs in the cellular response to 
abiotic stresses, including cold [264] and shortages of S 
[89, 265, 266] and N [47]. In Chlamydomonas SAC1 and 
SnRK2.2 have been implicated in the regulation of TAG 
synthesis during S deprivation by modulating the expres-
sion of DGTT1–4 [267]. Indeed, the biotechnical impli-
cations of this signaling pathway have recently prompted 
the genome-wide identification of 22 CKIN proteins 
in Chlamydomonas as orthologs of plant SnRKs [250]. 
Whether the orthologous DREAM complex components 
in Chlamydomonas are targeted by members of a TOR 
or SnRK/CKIN signaling cascade to relay cellular nutri-
ent status and to regulate the transitions between cell 
division and quiescence cycles, remain to be elucidated. 
However, these studies are starting to shed light on the 
significance of signaling pathways involving TOR and 
SnRK/CKIN in the coordination of nutrient availability, 
energy metabolism, and cellular growth in photosyn-
thetic organisms. This emerging knowledge provides an 
essential basis for the further exploration of these sign-
aling networks and assessment of their bioengineering 
potential in microalgae.

Concluding remarks
Given the ongoing biotechnological interests in algae, 
increasing numbers of studies are giving rise to a sys-
tems-level understanding of how various algal species 
respond to nutrient starvation, and how the metabolic 
pathways leading to the accumulation of TAG are regu-
lated. Although the knowledge of transcriptomic and 
metabolic changes accompanying nutrient short-
age and the entry into quiescence in algae continues to 
improve and evolve, the signaling and molecular com-
ponents coordinating metabolism, energy status and 
cell division cycle are still not well-understood. The 
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trade-offs between growth and the accumulation of eco-
nomically valuable compounds thus continue to hinder 
the directed metabolic engineering of algae for biofuels 
and the commercial viability of utilizing algae as a chas-
sis for the synthesis of high-value products. However, a 
better understanding of the controls of the cell division 
cycle in response to nutrient shortage and the signal-
ing pathways coupling the cellular growth to energy and 
lipid homeostasis has the potential to improve the future 
metabolic engineering strategies of algae. Indeed, emerg-
ing evidence suggests that the manipulation of signaling 
pathways, such as TOR, represents a viable approach to 
increasing the lipid productivity in algae with little to no 
growth penalties [35, 268]. Thus, further studies of the 
signaling networks and the downstream components 
mediating and linking these biological processes are cru-
cial in bridging a critical knowledge gap, which currently 
prevents us from achieving the optimal balance between 
the production of biofuels and biomass in algae employ-
ing simple and robust culturing conditions.
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